

# A Cost-Effective Test Solution for Parametric Test & Reliability Lab



#### **Author Details**

Ching-Too Chen Adam Konicek Jeff Gruszynski Jonathon Lee Chintankumar Patel

# Parametric Testing Ecosystem from 2009 to 2024

#### **Presentation in SWTest 2009**

#### DC Production Parametric Testing Overview

Upwards of 1000 facilities worldwide do semiconductor wafer processing. Around 2000 parametric testers are used in those sites, 750 of which are obsolete. That is, the system vendor has stated they no longer provide new versions, no longer update software, and will only repair on a best-effort basis.

Reedholm 8/2009

Equipment

**USS Billion** 

\$160

\$140

\$120

\$100

\$80

\$60

\$40

\$20 \$-



#### **Technology Drives Innovations & Demand**



10%

0%

-10%

#### **Presentation in SWTest Asia 2024**

#### 1,515 facilities worldwide in 2024

2023 - 2024 26 New Fabs Build 2024 - 2030 58 New Fabs Builds 2024 - 2027 19 Advanced Fabs (≤10nm)

More than **1,000** new systems demand in the market Request for the **cost-effective & innovative solutions** 



#### 300mm Equipment Spending

- Will Reach to \$123.2B in 2025 and \$140.8B in 2027
- Total \$400B from 2025 to 2027

Semi Report 9/26/24



2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

### More than 40% of Global Foundry are in Advanced Nodes in 2024





Beth Kindig June 04,2024 Tech Inside Network / Seeking Alpha

TSMC's advanced nodes (3nm to 7nm) contributes 65% of revenue of Q1, 2024

TSMC owns market shares from 59% to 62% in Global Foundries between Q4 2022 and Q2,2024

### 19 New Advanced FABs Are Being Built Between Now and 2027 About Total \$286 Billion

| The wond 3 wost/dvanced benneonadetor 1 abs (101111- 1.41111) Deing Duit til 2021 |             |                             |                        |               |                     |  |  |
|-----------------------------------------------------------------------------------|-------------|-----------------------------|------------------------|---------------|---------------------|--|--|
| Company                                                                           | Start Date  | Investment (USD<br>Billion) | Time for<br>Completion | QTY of Plants | Location            |  |  |
|                                                                                   | 2021-2022   | 20                          | 2025                   | 2             | Arizona, US         |  |  |
| Intel                                                                             | 1/21/2022   | 20                          | 2026                   | 2             | Ohio, US            |  |  |
|                                                                                   | 3/15/2022   | 36                          | 2027 (Postpone)        | 1             | Magdebury, German   |  |  |
|                                                                                   | 10/4/2022   | 20                          | 2025 -2026             | 1             | New York, US        |  |  |
| Micron                                                                            | 9/1/2022    | 15                          | 2025 -2026             | 1             | Idaho, US           |  |  |
|                                                                                   | 2022-2023   | 5                           | 2025-2026              | 1             | Hiroshima, Japan    |  |  |
| Doniduo                                                                           | 2023 - 2024 | 17                          | 2027                   | 1             | Hokkaido, Japan     |  |  |
| Rapidus                                                                           | 2025-2026   | 20                          | 2027                   | 1             | Hokkaido, Japan     |  |  |
| TSMC                                                                              | 12/6/2022   | 20                          | 2025                   | 1             | Arizona, US         |  |  |
|                                                                                   | 2024-2025   | 20                          | 2026-2027              | 1             | Arizona ,US         |  |  |
|                                                                                   | 2024-2024   | 12                          | 2025                   | 1             | Kaohsiung, Taiwan*  |  |  |
|                                                                                   | 2024-2024   | 12                          | 2026                   | 1             | Baoshan, Taiwan*    |  |  |
|                                                                                   | 2025-2025   | 12                          | 2027                   | 1             | Taichung, Taiwan*   |  |  |
| Nanya                                                                             | 6/23/2022   | 10                          | 2025                   | 1             | New Taipei, Taiwan  |  |  |
| Samauna                                                                           | 11/24/2021  | 17                          | 2024-2025              | 1             | Texas,TI            |  |  |
| Samsung                                                                           | 2020-2021   | 20                          | 2024-2025              | 1             | Pyeongtaek, S Korea |  |  |
| SK Hynix                                                                          | 9/6/2022    | 10                          | 2025                   | 1             | Cheongiu, S Korea   |  |  |
| Total                                                                             |             | 286                         |                        | 19            | Cheongiu, S Korea   |  |  |

The World's Most Advanced Semiconductor Eabs (10pm, 1.4pm) Reing Built till 2027

#### Estimate from now to 2027

- **19 Advanced Nodes Foundries (FAB)**
- 5 8 SiC/GaN/ Power FABs
- 16 22 Foundries & FABs

#### More than 1000 Labs need to be upgraded

| Advanced Process foundry capacity by region |      |      |       |  |  |  |
|---------------------------------------------|------|------|-------|--|--|--|
| Advanced                                    | 2022 | 2024 | 2027  |  |  |  |
| TW                                          | 70%  | 66%  | 55%   |  |  |  |
| KR                                          | 11%  | 11%  | 8%    |  |  |  |
| US                                          | 10%  | 10%  | 22% ★ |  |  |  |
| JP                                          | 0%   | 0%   | 3%    |  |  |  |
| CN                                          | 8%   | 9%   | 6%    |  |  |  |
| Others                                      | 0%   | 4%   | 5%    |  |  |  |
| Total                                       | 100% | 100% | 100%  |  |  |  |

Source: TrendForce, Apr., 2024

#### \* Estimated Number

Note: Modified from Z2Data Solution published on April 11,2024 and Semi Report (logic and memory total \$293 B) on 9/26/24

### **Technologies Require Innovations in FABs**



### Innovations come with New Challenges in Lab & FAB

|                                                                                              | Planar FET                                                                                                                                      | FinFet                                                                                                                                                             | Gate-All-Around FET                                                                                                                                |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Logic Nodes                                                                                  | > 22nm                                                                                                                                          | 22nm- 3nm                                                                                                                                                          | 3nm - 1nm                                                                                                                                          |
| Logic Transistor Density<br>Million Transistors/mm <sup>2</sup>                              | 15.3 - 16.5 (22nm)<br>Intel                                                                                                                     | 130 - 170 (7nm)<br>Samsung/TSMC                                                                                                                                    | 330 (2nm)<br>IBM                                                                                                                                   |
| Hardware & Software<br>Requirements for the<br>different nodes and<br>devices in Lab and Fab | Robust probe card<br>Switch Matrix System = 48<br>pins<br>External LCR Meter<br>External Pulse Generator<br>SMU @ 4%+ 504fA current<br>accuracy | Low leakage & robust probe card<br>High parallel test system > 24 pins<br>CMU > 1-2 MHZ<br>Pulse capability < 1uS to 100nS<br>SMU < 1% + 100fA current<br>accuracy | Advanced probe card<br>Higher parallel test System > 48<br>pins<br>CMU > 10MHZ<br>Pulse capability < 50nS<br>SMU < 0.5% + 80fA current<br>accuracy |
|                                                                                              | LAB to FAB data reference                                                                                                                       | LAB to FAB data correlation                                                                                                                                        | Software & Hardware integration                                                                                                                    |

# **Celadon VersaCore™ Family**



# **Applications**

- Wafer-level Reliability (WLR)
- Modeling & Characterization
- Parametric Test from lab to production

# VC20E<sup>™</sup> Specifications

- Rated from -65°C to 200°C
- <5fA/V leakage @ 10s and 100V</li>
- Ability to probe pads as small as 20x20µm





100% 90% Low 80% Scrub Probe Yield at 175 °C 70% One-Sided 60% Interlaced 50% 40% 30% 20% 10% 0% 5 10 15 20 25 30 35 0 40 45 50 Square Pad Size (µm)

Fig. 11 Probe yield as a function of square pad size for three types of probe card using the new "opens" structure. Minimum probe pad size is the smallest pad that has 100% probe yield.

[1] Smith, Hall, and Tranquillo, March 2023



#### 48 channels

•

O Up to 104 channels with VC43E<sup>™</sup>

- 3kV option available
- Direct Dock and Cabled Out versions

# VersaCore<sup>™</sup>: Reducing Cost of Test

# **Advantages**

- Modular: many possible layouts, one common interface
- Lab to Fab: the same core can be used in both environments
- Robust: capable of 8-10 million touchdowns or more
- Repairable and rebuildable





[2] Kaiser, Armendariz, and Hwang, August 2021

# **Celadon/Chroma Interface**

# **Custom Probe Card Interface**

- 96 triaxial BNC connectors for 48-channel Quasi-Kelvin measurements
- Heat shield for high-temperature testing
- Ample clearance for exchanging VC20E<sup>™</sup> probe cards







### **Hyperion and Cost Impact**

Value Proposition

## Common Tool and Elements for Multi-Vendor Instruments

- Test plan
- Test algorithm code
- Data output format
- Software interface
- User Training

### Controlling Variables between Test Systems

- Test System differences minimized shorter time to data, decision, debug
- Predictability of results on different test systems
- Identify the correct cause of test problems quickly
- Better Return on Assets/Resources

# **Experiment Overview**

 Hyperion Test Shell supports both the Chroma 3530 tester and various 19" rack parametric test instruments

#### Hyperion structure

- Plug-in Architecture based on abstraction
- Common core of API features for interoperability
- Peaked special purpose API features with more limited interoperability (e.g. Fast BTI)

#### Goal of Experiment

- Claimed interchangeability must be validated with measurements on common set of devices on-wafer
- Recent best performance instruments investigated
- Legacy instruments are known to have vintage-defined limits
- Results Summary

### Hyperion and Cost Impact Value Proposition

#### Multiple Instruments and Wafer Probers supported

| Vendor SN                               |                                           | U                                   | СМИ                                   | PGU                                       | FMU                                       | Switches                    |  |  |
|-----------------------------------------|-------------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------|--|--|
| Chroma                                  |                                           |                                     | 3530                                  | Per-pin - N/A                             |                                           |                             |  |  |
| Keysight                                | B1500A B1505A<br>E5270A/B<br>E5260A 4142B |                                     | 4284A, E4980A                         | 81xxA <sup>+</sup><br>81xxxA <sup>+</sup> | 53xxx <sup>+</sup>                        | E5250A B2200A<br>4084A/B    |  |  |
| Keithley/Tektronix 4200<br>2600<br>2400 |                                           | 00<br>00<br>00                      | 4200                                  |                                           |                                           | 707A/B                      |  |  |
| Vendor                                  |                                           | Model                               |                                       |                                           |                                           |                             |  |  |
| Tokyo Electron (TEL)                    |                                           | P8, P12, P12 Precio                 |                                       |                                           |                                           |                             |  |  |
| ElectroGlas                             |                                           | 4080, 4090                          |                                       |                                           |                                           |                             |  |  |
| Accretech <sup>+</sup>                  |                                           | UF200, UF300, UF2000, UF3000        |                                       |                                           | <sup>†</sup> Planned ar under davelanment |                             |  |  |
| MPI                                     |                                           | TS2000 (All SENTIO firmware models) |                                       |                                           |                                           |                             |  |  |
| Cascade/FormFactor                      |                                           | All Nucleus and                     | All Nucleus and Velox firmware models |                                           |                                           | riamed of under development |  |  |

# **Experiment Design**

 Correlation of data from the same devices on-wafer (custom TSMC 1.9µm wafer for parametric validation)

- Comparative Algorithms
  - SMU:
  - CMU:
  - Test Time



Chroma (TSMC) Test Wafer



**B\_Tool and S\_Tool are connected to** Celadon Probe system (VC20)

| Hardware        | Soft       | ware     | Algorithms |                                    |     |                                   |
|-----------------|------------|----------|------------|------------------------------------|-----|-----------------------------------|
| Chroma 3530     | Hyperion   |          |            |                                    |     |                                   |
| Keysight B_Tool | EasyExpert | Hyperion | SMU        | I <sub>d</sub> vs. V <sub>ds</sub> | CMU | C <sub>g</sub> vs. V <sub>g</sub> |
| Keithley S_Tool | Clarus     | Hyperion |            |                                    |     |                                   |

### B\_Tool EasyExpert vs. B\_Tool Chroma Hyperion Correlation PMOS T1@ Die75 SEP. 2024

□ Id-Vd comparison b/w EasyExpert(ref.) and Hyperion for Id test conditions@ Vg {-1V,-2V,-3V} / Vd {0V to -5V step: -50 mV}



High resolution ADC on drain, 1PLC Integration, Hold/Delay 10ms

### B\_Tool EasyExpert vs. B\_Tool Chroma Hyperion Correlation PMOS T1@ Die75 SEP. 2024

□ Id-Vg comparison b/w EasyExpert (ref.) and Hyperion for Id test conditions@ Vg {1 to -5V, step:-50mV} / Vd {-100mV}



### B\_Tool EasyExpert vs. B\_Tool Chroma Hyperion Correlation NMOS T3@ Die75 SEP. 2024

C-V comparison b/w EasyExpert (ref.) and Hyperion @ Vg {-5 to 5V, step:-50mV, AC level 50mV, Frequency 100KHz}



B\_Tool\_Easyexpert
B\_Tool\_Hyperion





B\_Tool\_Easyexpert
B\_Tool\_Hyperion



NMOS (W80, L6) C-V Capacitance Correlation



### S\_Tool Clarius vs. S\_Tool Chroma Hyperion Correlation PMOS T1@ Die75 SEP. 2024

□ Id-Vd comparison b/w Clarius (ref.) and Hyperion for Id test conditions@ Vg {-1V,-2V,-3V} / Vd {0V to -5V step: -50 mV}



### S\_Tool vs. S\_Tool Chroma Hyperion Correlation PMOS T1@ Die75 SEP. 2024

□ Id-Vg comparison b/w Clarius (ref.) and Hyperion for Id test conditions@ Vg {1 to -5V, step:-50mV} / Vd {-100mV}



High resolution ADC on drain, 1PLC Integration, Hold/Delay 10ms

5<sup>th</sup> Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

### S\_Tool Clarius vs. S\_Tool Chroma Hyperion Correlation NMOS T3@ Die75 SEP. 2024

C-V comparison b/w Clarius (ref.) and Hyperion @ Vg {-5 to 5V, step:-50mV, AC level 50mV, Frequency 100KHz}



● Clarius ● Hyperion\_S\_Tool





Clarius
 Hyperion\_S\_Tool



NMOS (W70, L6) C-V Capacitance Correlation



1PLC Integration, Hold/Delay 10ms

### B\_Tool vs. Chroma 3530 with Hyperion Correlation PMOS T1@ Die12\_0 SEP. 2024

□ Id-Vd comparison b/w B\_Tool and Chroma 3530 for Id test conditions@ Vg {-1V,-2V,-3V} / Vd {0V to -5V step: -50 mV}



### B\_Tool vs. Chroma 3530 with Hyperion Correlation PMOS T1@ Die12\_0 SEP. 2024

□ Id-Vg comparison b/w B\_Tool and Chroma 3530 for Id test conditions@ Vg {1 to -5V, step:-50mV} / Vd {-100mV}



# **Data Correlation Results Summary**

- Descent correlation found...
  - Between vendor GUI interface and Hyperion test algorithms using same test hardware
  - Between each vendor's test hardware using common Hyperion test algorithms
  - Between Hyperion controlling both vendor test hardware and Chroma 3530 serial testing and parallel testing with test throughput advantages
- Some issues seen due instrument-specific differences
  - Good correlation between 3530 and B1500A
- Chroma Hyperion and 3530 Opportunities
  - Investigation of causes differences that affect new technologies
  - Identical algorithms can be used on multiple setups of test hardware
  - Interchange of testing on multiple test hardware is very feasible

# 3530 Parallel Test Is 7.4 Times Faster Than B\_Tool





6 nmos devices Id from Vd VD=0 to 5.5V, 0.1V steps Vg=1,2,3,4,5V

- 1. Serial test: 3530 is faster than B\_Tool ~1.2 times.
- 3530 parallel test is ~7.4 times faster than B\_Tool serial test on 6 DUTs (MOSFET)
- The throughput comparison between 3530-48P and
   48 pins switch-matrix test system is estimated
   >3 times better on 12 DUTs (MOSFET)

### A Cost-Effective Test Solutions for Parametric Test & Reliability Lab Summary



**Keysight B\_Tool** is connected to Celadon's probe system (VC20) by triaxial cables.



Chroma 3530 is direct docking on the wafer with Celadon Probe System (VC20).



**Chroma 3530** is connected to Celadon's probe system (VC20) by triaxial cables.

#### A Cost-Effective Test Solution for Parametric Test & Reliability Lab

| Application                  | Hardware I      | Hardware II     | Software Platform | Triax Cable | Probe Card / VC20 |
|------------------------------|-----------------|-----------------|-------------------|-------------|-------------------|
| Instrument to Instrument     | Keysight B_Tool | Keithley S_Tool | Hyperion          | Yes         | Yes               |
| Discrete <> Wafer            | B_Tool & S_Tool | 3530            | Hyperion          | Yes         | Yes               |
| LAB to FAB                   | B_Tool & S_Tool | 3530            | Hyperion          | Yes         | Yes               |
| Serial Between Parallel Test | B_Tool & S_Tool | 3530            | Hyperion          | Option      | Yes               |

# **References and Acknowledgement**

[1] B. Smith, D. Hall, and G. Tranquillo, "Test Structure for Evaluation of Pad Size for Wafer Probing," ICMTS, March 2023.

[2] R. Kaiser, K. Armendariz, and J. Hwang, "Production Parametric Probe: An Essential Guide to Lowering Cost of Test While Probing Very Small Pads," SWTest, August 2021.

[3] Wang, M. 2/13/2024 "A Review of Reliability in GAA Nanosheet devices" Feb 13,2024 Micromachines 2024, 15, 269

Keely Testa and Karen Armendariz, Celadon Systems, Inc. & Jonathon Lee and Chintankuma Patel, Chroma ATE Inc. for helping with the preparation of this presentation

# **Thank You!**

