

On PCB with 50Gbps for ATE board, Characteristic improvement Approach

Takahiro Yagi OKI Circuit Technology Co., Ltd.

Overview

- Background
- High-speed PCB trends
- Challenges for High-Speed PCB
- Flow for development of High-Speed PCB
- PCB characteristic improvement
- Development examples
- Correlation between Simulation and measurement
- Conclusion

Background

- Data Rate Doubled in 3 to 4 years : exceeding 56Gbps
- PCB are also required to perform at 50GHz or more

Ex:

- Nyquist frequency of 56G-PAM4 : 14GHz
- The 3rd harmonic : 42GHz

The Relationship Between Ethernet & Signaling Rates

Source: IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group

Data rate and Nyquist frequency

Data Rate	Encoding	Nyquist Frequency
56Gbps	PAM4	14GHz
64Gbps	PAM4	16GHz
56Gbps	NRZ	28GHz
112Gbps	PAM4	28GHz
128Gbps	PAM4	32GHz
224Gbps	PAM4	56GHz

Background

Signal speed in wafer testing is increasing
 Probe Card also required to support high-speed signal
 → Reducing loss and reflection of pads and vias

Background

Three factors of PCB Performance : Material, Manufacturing, and Design
 → These factors must be balanced with performance and cost

• Approach by materials Evolution to Low-Dk/Df (Dk : 3.0, Df : 0.001 and less)

Approach by manufacturing process -1
 High speed PCB require flat surfaces → Chemical bonding

Approach by manufacturing process -2
 Chemical bonding is also effective in DC resistance
 Resistance is reduced by 25%, especially effective for power wiring

- Effect of material & surface treatment
- ③ improves 1.9dB by the effect of chemical bonding
 ③ and ② are similar → Chemical bond improves loss and cost
- Most Effective is 6 : Megtron8U and Chemical bonding: 5.1dB improvement

- Eye pattern comparison : (1) < (3) < < (6)
 - \rightarrow High-speed materials and processing show great effects

Dielectric loss is the dominant factor
 At High frequency, the effect of conductor loss has increased
 → Realize required characteristic by combinations

Structural challenges

- In Probe card, via is necessary for connection from top to bottom That via becomes the cause of loss of PCB performance
- Controlling via characteristics at high frequencies is so challenging

Challenges for High-Speed PCB

Goal

- Achieve well-balanced cost and characteristics
- "Via characteristic control" to achieve the targeting characteristics

Challenges
 Providing PCBs that meet required characteristics without re-spin
 → Design & Simulation with link to "MONOZUKURI" technology

Simulation & Design Re-spin

Simulation technology that reflecting manufacturability
Correlation b/w simulation and measurement

Development flow of High-Speed PCB

Manage design, manufacturing, and inspection consistently

PCB characteristic improvement by design

Improved via's characteristic

Apply smaller hole and via diameter as possible ⇒ Reduce parasitic capacitance Not exist stub

\Rightarrow Not cause resonance

PCB characteristic improvement by design

Effects of dimensional changes

- 1) Hole and land diameters
- 2) Via structure
- 3) Stub length

Smaller hole sizes improve insertion loss

PCB characteristic improvement by process

Manufacturing variations impact

So many variable factors in PCB manufacturing

- \rightarrow which is key factor ?
- → Definition of manufacturing tolerances

The impact of random changes must be considered

- Variable factors
- Board thickness
- Hole Dia
- Land Dia
- Anti-pad Dia
- Hole alignment
- · Layer alignment
- Dk
- Stub length

PCB characteristic improvement by process

- Stub accuracy control and inspection
 - High-speed PCB achieve a stub accuracy in 0.15mm or less
 - TDR inspection detects remaining stubs

Development examples

"Fine pitch Through via Technology" reduces crosstalk for 56G-PAM4
 ⇒ Smaller 0.15mm drill is used to reduce coupling in the Z direction

Fine pitch Through via Technology

Correlation between measurement and simulation

• Characteristics control of high-speed trace including via Target spec : Insertion loss : -3dB@20GHz • Board • Board • Board • So Laye Impedance : $50\Omega \pm 3\Omega$ (Tr=25ps) • Via dia

Good correlation between via TDR (impedance) and Insertion loss up to 60GHz

Conclusion

 Achieve the development of high-speed PCB efficiently by controlling materials, processes, and design

• Via's characteristic control is the effective technology for highspeed transmission

• Through the simulation with high correlation up to 50GHz, realize the required characteristic with proper cost

Aim correlation on 100 GHz as next step

Thank You