

Space Transformer Organic Technologies for Next-Generation Probe Card Substrates

FICT

Yo Nozaka FICT LIMITED

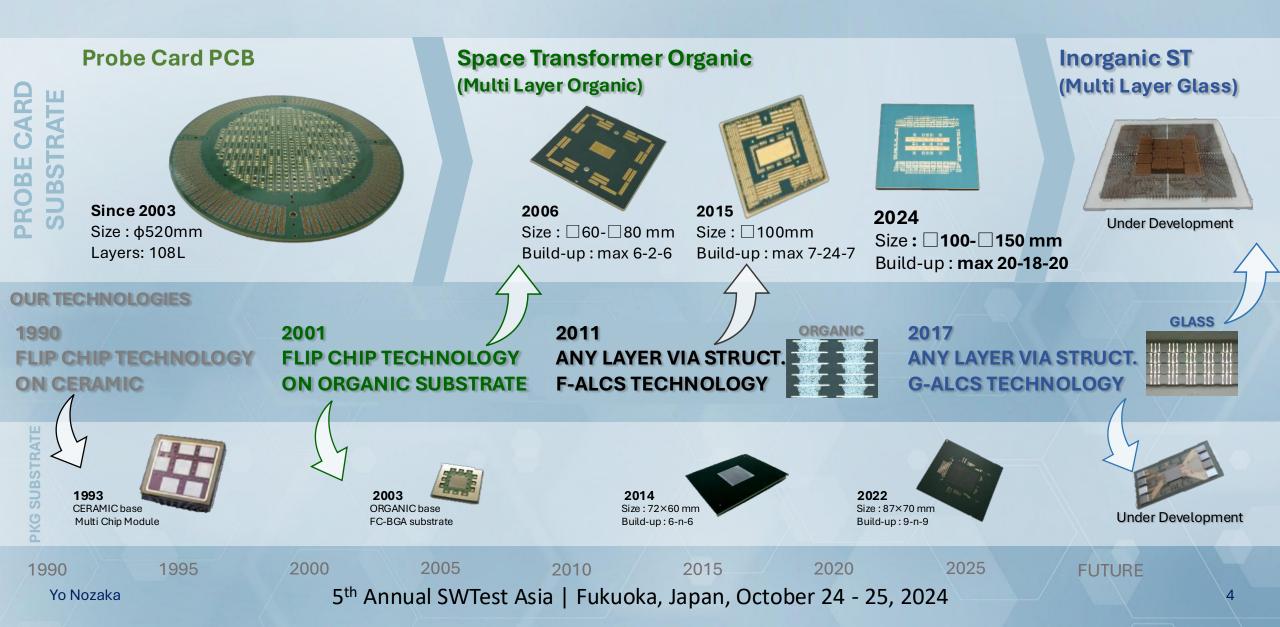
Outline

Introduction

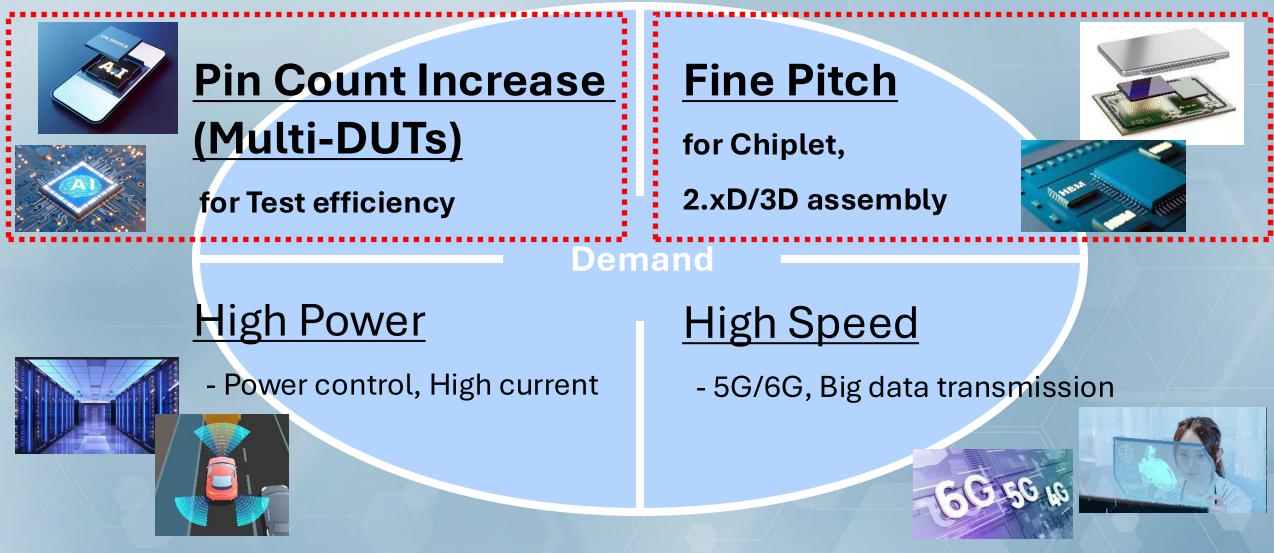
- Background
- Demand for Probe Card
- Manufacturing Structure Selection
- Goals/Challenges

Latest Development Status of Space Transformer Organic

- TOPIC 1 : Pin Count Increase (Multi-DUTs)
- TOPIC 2 : Fine Pitch Development
- Future Challenges


Breakthrough Technology : G-ALCS (Multi Layer Glass Substrate)

- What is G-ALCS?
- Characteristics of G-ALCS
- Our Technology Roadmap
- Conclusion



Yo Nozaka

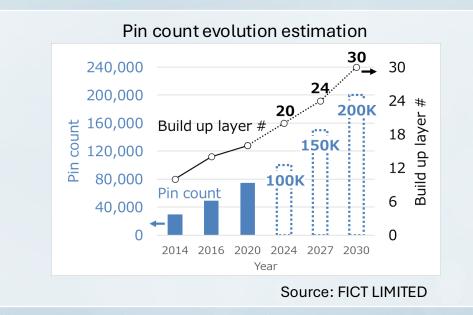
Evolution of FICT Probe Card Substrates

Demand for Probe Card

Yo Nozaka

Manufacturing Structure Selection

Specifications		Build up		Thin film
High density	Good		Excellent	
Layer #	Good	<u>Core + Build up</u>	Poor	Core + Thin film
Electrical properties (SI, PI)	Good		Poor	
Power delivery structure	Good	Build up Core	Poor	Thin film
Productivity	Good	Build up	Poor	
Cost (NRE, Material, Yield)	Good		Poor	
Lead time	Fair		Fair	
Comments		rally superior properties critical disadvantages)	Superi	or on high density routing


Build up structure can be applied to a wide range of existing products. By unleashing its potential, we aim to offer higher-performance products.

Yo Nozaka

Goals/Challenges

TOPIC 1 Pin Count Increase (Multi-DUTs)

<u>Goal : 100K pins by 2024</u> <u>200K pins by 2030</u>

Challenge :

Increasing build up layers up to 20 and more

TOPIC 2 Fine Pitch Development

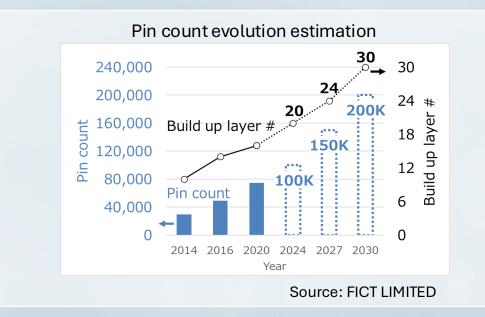
<u>Goal : 45µm pitch by 2024</u> <u>30µm pitch by 2026</u>

Min. Bump pitch scale roadmap for chiplet interposer

					(unit:µm)
Material	2019	2022	2025	2028	2031
Organic interposer	50	45	40	40	30
Silicon interposer	40	35	30	20	20

Source: Heterogeneous Integration Roadmap. IEEE

Challenges:


- 1. Fine via pitch by using thin build up structure
- 2. Pad position control by lowering substrate CTE

Yo Nozaka

Goals/Challenges

TOPIC 1 Pin Count Increase (Multi-DUTs)

<u>Goal : 100K pins by 2024</u> <u>200K pins by 2030</u>

Challenge :

Increasing build up layers up to 20 and more

TOPIC 2 Fine Pitch Development

<u>Goal : 45µm pitch by 2024</u> <u>30µm pitch by 2026</u>

Min. Bump pitch scale roadmap for chiplet interposer

					(unit:µm)
Material	2019	2022	2025	2028	2031
Organic interposer	50	45	40	40	30
Silicon interposer	40	35	30	20	20

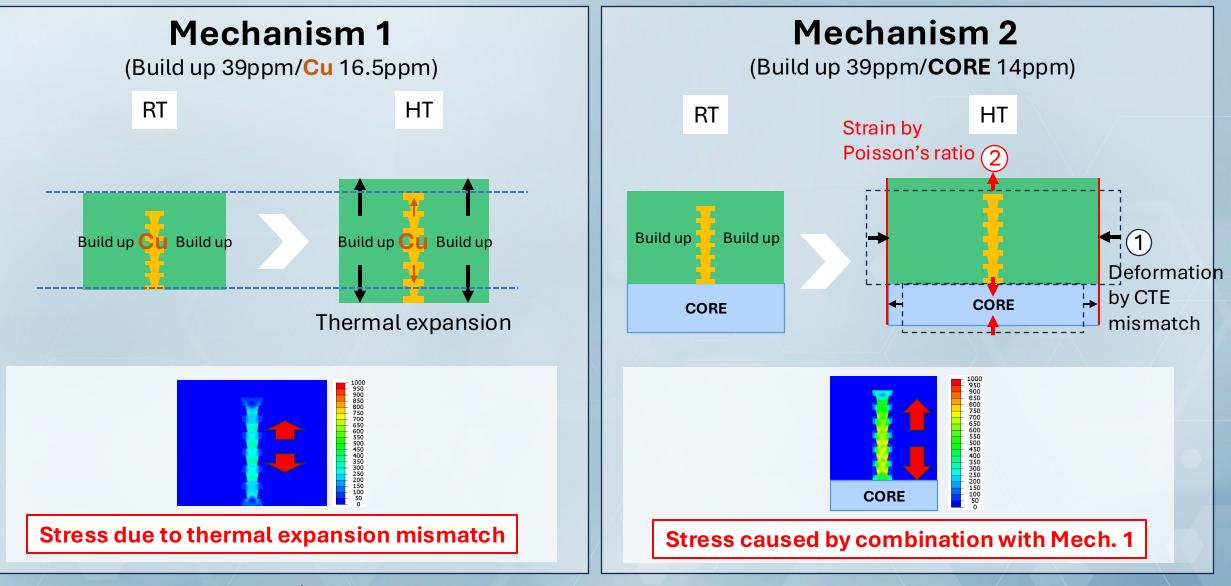
Source: Heterogeneous Integration Roadmap. IEEE

Challenges :

- 1. Fine via pitch by using thin build up structure
- 2. Pad position control by lowering substrate CTE

Yo Nozaka

TOPIC 1: Pin Count Increase (Multi-DUTs)


Approach to Keep up with Pin Count Increasing Trend

	Pin count increasing						
	I/O nets increasing						
	Routing area increasing						
	High build up layers	S	Lar As		Size 18LY PROCESS		Fine L/S
	Essential technologies	to increas	e build up l	ay	ers		
	Technology 1	Techr	nology 2		Technology 3		Technology 4
	Laser via stress reduction by small CTE mismatch	process tur	Laser via shape imp. by process tuning (Laser via drilling, Desmear)		Flat dielectric/Cu plating surface		Layer to layer position accuracy improvement
	Main focus in this present	ation					
Nozaka	5 th Ann	ual SWTest As	sia Fukuoka,	Jap	an, October 24 - 25, 2024		9

Yo

TOPIC 1: Pin Count Increase (Multi-DUTs)

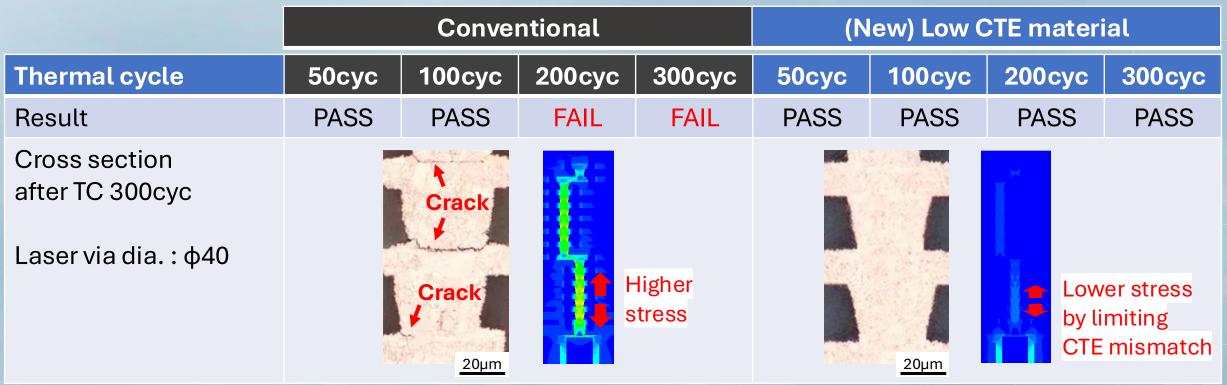
Thermal stress due to CTE mismatch

5th Annual SWTe

Yo Nozaka

Test Vehicle Specification (Increasing Build up Layers)

Specifications		Conventional			(New) Low CTE material		
Subs	trate size	100mm	1*100mm*3	mmt	100mi	m*100mm	n*3mmt
La	ayers		20-8-20			20-8-20	
	Core	⊿ 25 -	14	-57	%	ך 6	. 14
CTE [ppm]	Build up film		39	-49	%	20	214
The best of	Copper	⊿ 22.5 -	16.5		,	16.5	-⊿3.5
	Core		26.5	+28	3%	34	
Modulus [GPa]	Build up film		5	+16	0%	13	
	Copper		130			130	
Build up film thickness		30µm		30µm			
Laser via diameter		40µm		40µm			
DUT pad diameter		60µm		60µm			
DU	Tpitch		80µm		80µm		

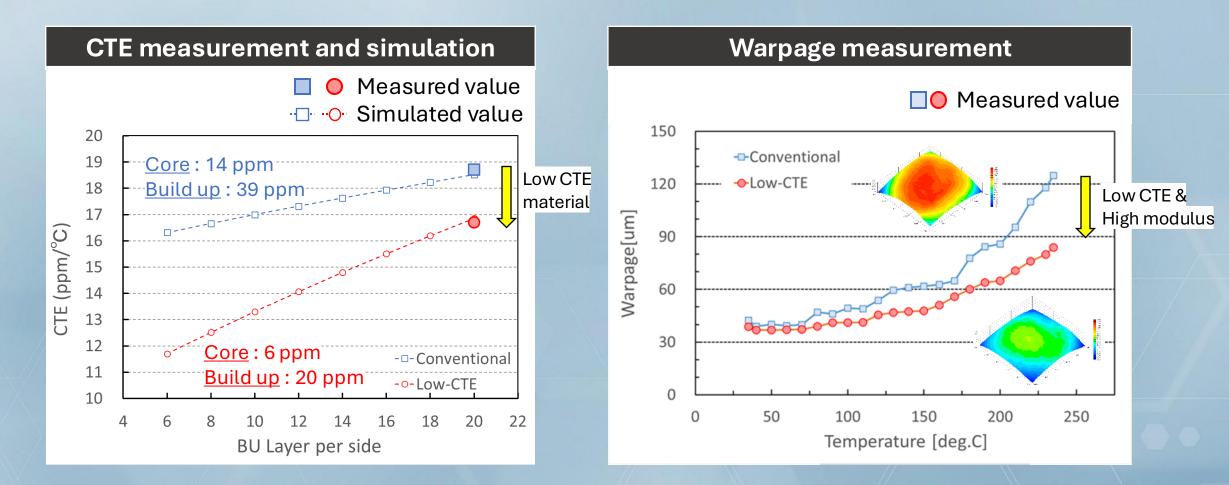

Yo Nozaka

5th Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

TOPIC 1: Pin Count Increase (Multi-DUTs)

Results (Thermal Cycle Test)

Test condition : Reflow 235deg.C x 6times + TC 50, 100, 200, 300cycles

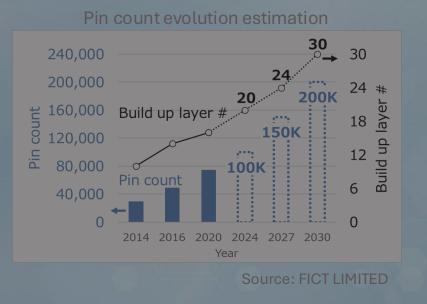


Reliability was improved by controlling CTE mismatch among Cu/Build up/Core. 100K pins structure with 20 build up layers is in mass production.

Yo Nozaka

TOPIC 1: Pin Count Increase (Multi-DUTs)

Results (CTE and Warpage)


CTE and warpage was improved by applying low CTE material set.

Yo Nozaka

Goals/Challenges

TOPIC 1 Pin Count Increase (Multi-DUTs)

<u>Goal : 100K pins by 2024</u> <u>200K pins by 2030</u>

Challenge : Increasing build up layers up to 20 and more

TOPIC 2 Fine Pitch Development

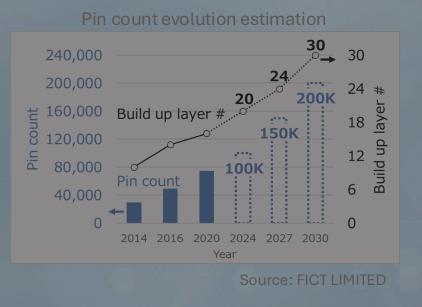
<u>Goal : 45µm pitch by 2024</u> <u>30µm pitch by 2026</u>

Min. Bump pitch scale roadmap for chiplet interposer

					(unit:µm)
Material	2019	2022	2025	2028	2031
Organic interposer	50	45	40	40	30
Silicon interposer	40	35	30	20	20

Source: Heterogeneous Integration Roadmap. IEEE

Challenges:


- 1. Fine via pitch by using thin build up structure
- 2. Pad position control by lowering substrate CTE

Yo Nozaka

Goals/Challenges

TOPIC 1 Pin Count Increase (Multi-DUTs)

<u>Goal : 100K pins by 2024</u> <u>200K pins by 2030</u>

Challenge : Increasing build up layers up to 20 and more

TOPIC 2 Fine Pitch Development

<u>Goal : 45µm pitch by 2024</u> <u>30µm pitch by 2026</u>

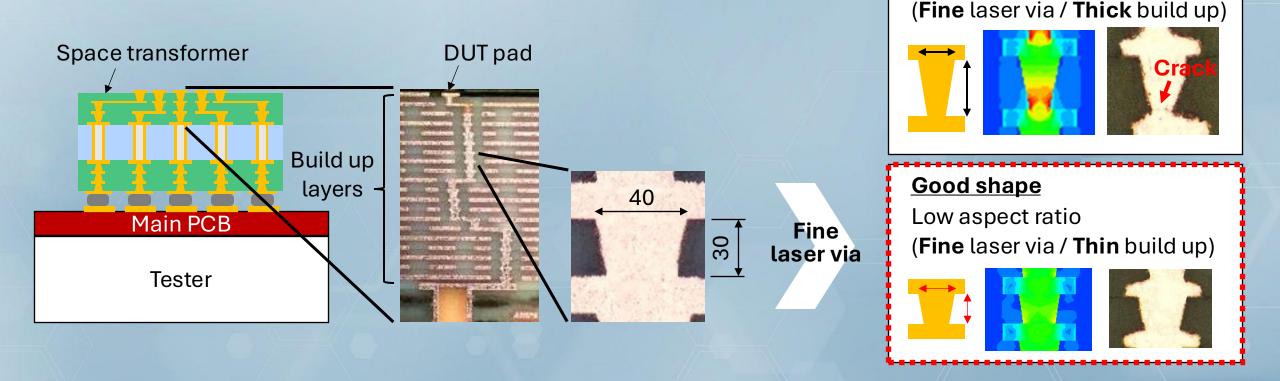
Min. Bump pitch scale roadmap for chiplet interposer

					(unit:µm)
Material	2019	2022	2025	2028	2031
Organic interposer	50	45	40	40	30
Silicon interposer	40	35	30	20	20

Source: Heterogeneous Integration Roadmap. IEEE

Challenges:

- 1. Fine via pitch by using thin build up structure
- 2. Pad position control by lowering substrate CTE


Yo Nozaka

Bad shape

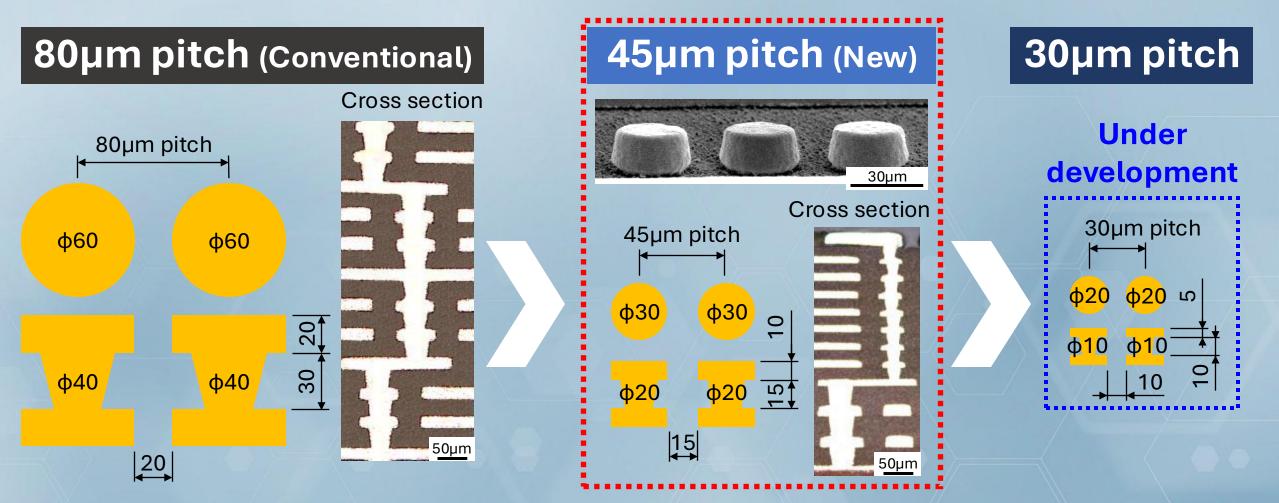
High aspect ratio

Challenge 1 : Fine Via Pitch by Using Thin Build up Structure

For fine pitch laser, control of aspect ratio (laser via/build up thickness) is important.

Yo Nozaka

TOPIC 2: Fine Pitch Development

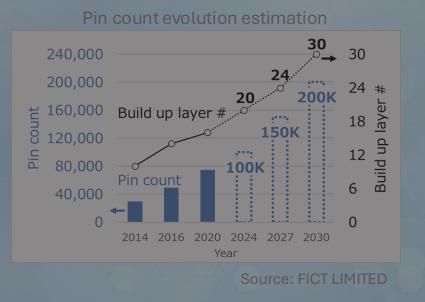

Test Vehicle Specification (Challenge 1 : Fine Via Pitch)

Specifications		Conventional build u & Low CTE material	p (New) Thin build up & Low CTE material
Substrate size		72mm*72mm*3mmt	72mm*72mm*3mmt
L	ayers	16-8-16	16-8-16
OTE	Core	6	6
CTE [ppm] Build up film		20	20
Copper		16.5	16.5
	Core	34	34
Modulus [GPa]	Build up film	13	13
[010]	Copper	130	130
Build up f	ilm thickness	30µm	15µm
Laser via diameter		40µm	-50% 20μm
DUT pa	id diameter	60µm	30µm
DU	IT pitch	80µm 📃	-44% 45µm

Yo Nozaka

TOPIC 2: Fine Pitch Development

Results (Challenge 1 : Fine Via Pitch)


$45\mu m$ pitch with $\phi 20\mu m$ laser via was developed by using thin build up structure.

Yo Nozaka

Goals/Challenges

TOPIC 1 Pin Count Increase (Multi-DUTs)

<u>Goal : 100K pins by 2024</u> <u>200K pins by 2030</u>

Challenge : Increasing build up layers up to 20 and more

TOPIC 2 Fine Pitch Development

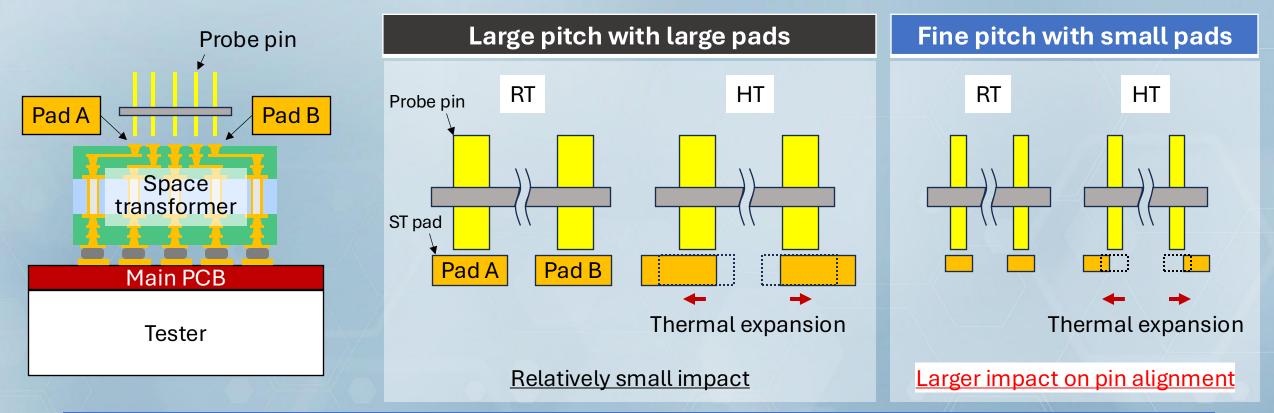
<u>Goal : 45µm pitch by 2024</u> <u>30µm pitch by 2026</u>

Min. Bump pitch scale roadmap for chiplet interposer

					(unit:µm)	
Material	2019	2022	2025	2028	2031	
Organic interposer	50	45	40	40	30	
Silicon interposer	40	35	30	20	20	

Source: Heterogeneous Integration Roadmap. IEEE

Challenges:

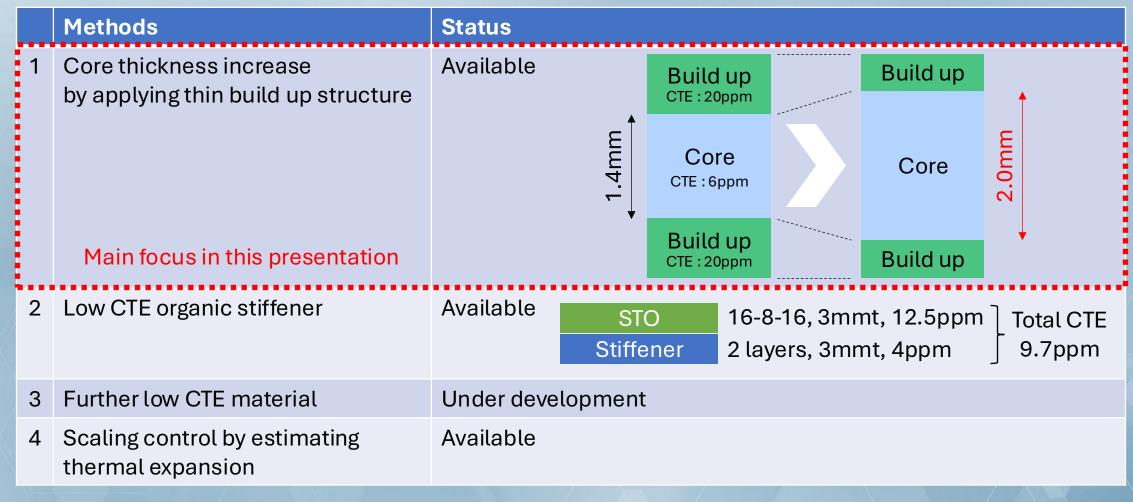

I. Fine via pitch by using thin build up structure

2. Pad position control by lowering substrate CTE

Yo Nozaka

Challenge 2 : Pad Position Control by Lowering Substrate CTE

Pad position shift by thermal expansion



Influence of thermal expansion becomes larger as DUT pads become smaller. CTE has to be lowered at the same time as fine pitch development.

Yo Nozaka

Challenge 2 : Pad Position Control by Lowering Substrate CTE

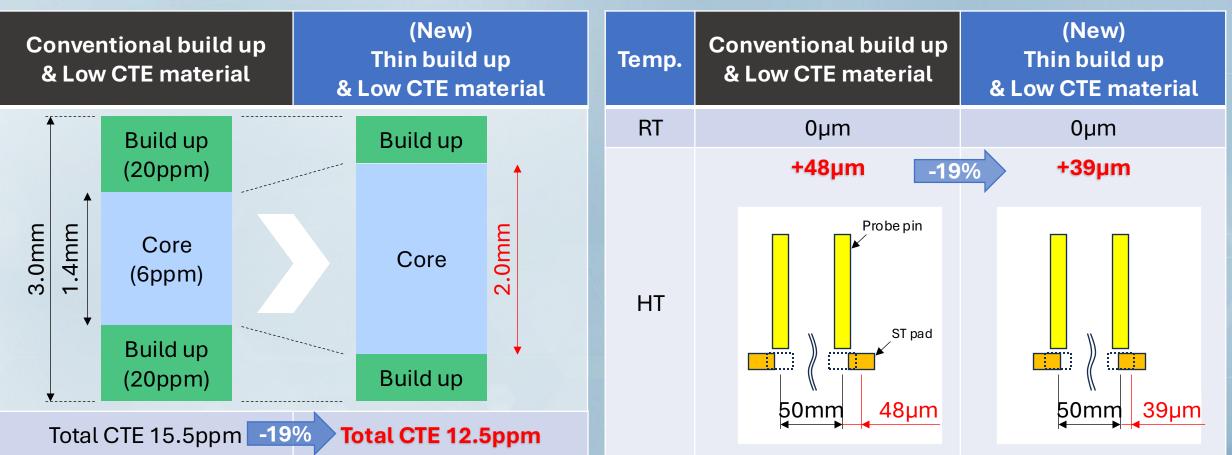
Methods for lowering substrate CTE

Yo Nozaka

TOPIC 2: Fine Pitch Development

Test Vehicle Specification (Challenge 2 : Pad Position Control)

	Speci	SpecificationsConventional build up & Low CTE material		(New) Thin build up & Low CTE material
	Substrate size		72mm*72mm*3mmt (Core : 1.4mmt)	72mm*72mm*3mmt (Core : 2.0mmt)
	La	ayers	16-8-16	16-8-16
	CTE [ppm] Core Copper		6	6
			20	20
			16.5	16.5
		Core	34	34
	Modulus [GPa]	Build up film	13	13
		Copper	130	130
	Build up f	ilm thickness	30µm	15µm
	Laser via diameter		40µm -50	0% 20μm
	DUT pad diameter		60µm	30µm
	DU	Tpitch	80µm -44	45μm
	/	5 th Annual SW/Te	st Asia Fukuoka, Japan, Octob	ner 24 - 25 2024


Yo Nozaka

TOPIC 2: Fine Pitch Development

Results (Challenge 2 : Pad Position Control)

Substrate structure and CTE

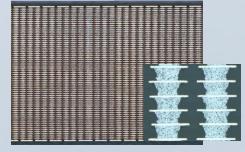
Thermal expansion (25 to 150deg.C)

Pad position accuracy was improved by lowering substrate CTE.

Yo Nozaka

Future Challenges

		TOPIC 1 : Pin Count Increase	TOPIC 2 : Fine Pitch Development
Goal		100K pins by 2024 200K pins by 2030	45µm pitch by 2024 30µm pitch by 2026
Challenges		Increasing build up layers up to 20 and more	 Fine via pitch by using thin build up structure Pad position control by lowering substrate CTE
Results		100K pins structure with 20 build up layers was realized by controlling CTE mismatch.	 45µm pitch structure was developed by using thin build up structure. Pad position accuracy was improved by lowering substrate CTE.
Futuro	Near future	200K pins structure development by 2030	Development of fine pitch of 30µm by 2026 ⇒ Further thin build up structure
Future Challenges	Beyond 2030	Lowering CTE and warpage of substrate with higher build up layers G-ALCS Technology (Glass Substrate)	Development of fine pitch of 20µm ⇒ G-ALCS Technology (Glass Substrate)
Yo Nozaka		5 th Annual SWTest Asia Fukuoka, Japan, (October 24 - 25, 2024 24


G-ALCS Technology (Glass Substrate)

Glass All-Layer Z-Connection Structure Technology

What is G-ALCS?

Current technology

F-ALCS

High layer PCB

F-ALCS core

FICT LIMITED

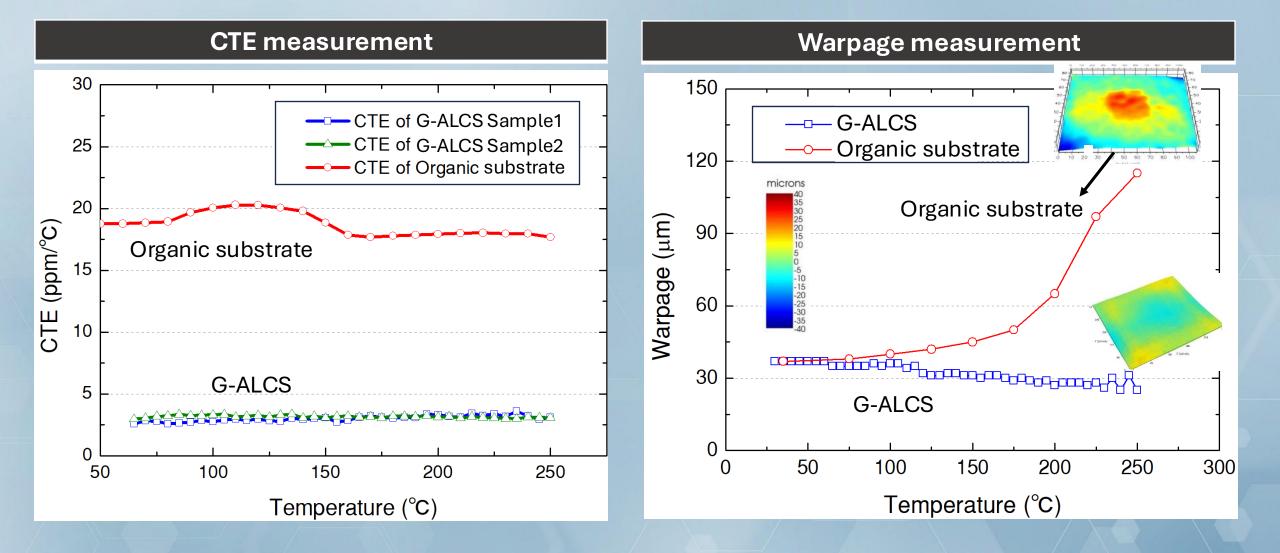
CHNC

STO with F-ALCS core

Yo Nozaka

New technology

G-ALCS Class All Layer Z-Connection Structure paste

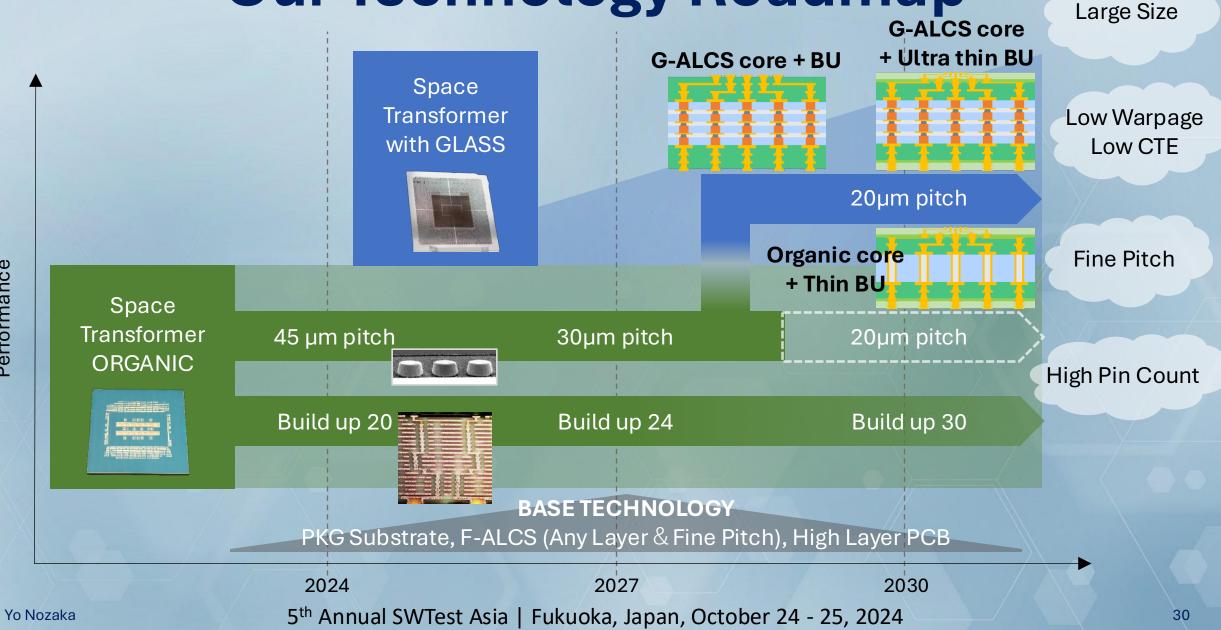

Features and benefits of our glass lamination

Feature	Benefit
Stack of thinner TGV	Yield and lead time imp. for high aspect ratio
Resistance to bending	Higher tolerability
Stack of glass	Components embedding
Any layer routing	Design flexibility
Low warpage	Fine pitch routing

Glass Core Space Transformer Organic core Glass core Build up layers 31 5243244 Ex:4LCore Organic Glass Structure **G-ALCS** core layers Ex: 2LCore CTE 6-16ppm/°C 3-7ppm/°C Modulus 10-40GPa 50-90GPa Tg 150-300°C >600°C Build up layers tanδ 0.003-0.01 0.001 0.1-1.0 < 0.05 Roughness

Yo Nozaka

Characteristics of G-ALCS



Yo Nozaka

Future Challenges with G-ALCS

		TOPIC 1 : Pin Count Increase	TOPIC 2 : Fine Pitch Development
Goal		100K pins by 2024 200K pins by 2030	45μm pitch by 2024 30μm pitch by 2026
Future Challenges	Beyond 2030	Lowering CTE and warpage of substrate with higher build up layers G-ALCS Technology (Glass Substrate)	Development of fine pitch of 20µm G-ALCS Technology (Glass Substrate)
G-ALCS Technology		Material properties allowing Low CTE and Warpage	20µm pin pitch by G-ALCS core with ultra thin build up structure
		<pre> for the second secon</pre>	G-ALCS core + Ultra thin BU

Our Technology Roadmap

Conclusion

Latest Development Status of Space Transformer Organic

- Achievements
 - 100K pins structure with 20 build up layers
 - 45µm pin pitch using thin build up structure
 - Higher pad position accuracy by lowering substrate CTE
- Future Challenges
 - 200K pins structure with build up layers up to 30 by 2030
 - 30µm pin pitch using further thin build up structure by 2026

Breakthrough Technology : G-ALCS (Future challenges beyond 2030)

- Lowering CTE and warpage of substrate with higher build up layers
- 20µm pin pitch by G-ALCS core with ultra thin build up structure

THANK YOU!

If you have any questions, feel free to visit our Booth (No.307) Or send an e-mail : fict-exhibition@fict-g.com

Latest Information Available on:

@fict9961

Yo Nozaka