

ACCOMPLISHING TRUE KNOWN GOOD DIE VERIFICATION TESTING IN WAFER TEST

Yuki Hirose Kosuke Yamanishi

5th Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

5th Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

Test Trend for Advanced Package

KGD: Known Good Die

Require True Known Good Die verification testing in WAFER TEST for saving cost. Prober needs active thermal control (ATC) solution to enable KGD in wafer test.

Agenda

- Background : The challenges of Device Temperature Control +/-3°C in Prober
- Objectives : Maintain constant device temperature
- New Technology for Active Thermal Control System (ATCS)
 - Item 1 : Tester IF Board
 - Item 2 : Advanced Chuck
 - Item 3 : Model-based controller design
- Key Data
 - Evaluation Fixture and Thermal Control Mode
 - Results of Active Thermal Control and Tj Simulation
- Conclusion

Background :

- The challenges of Device Temperature Control +/-3°C in Prober
- Unable to Device Temperature Control
 - Conventionally maintain constant chuck temperature
 - Chuck temperature control (conventional)

Thermal resistance exists

between the device and the chuck sensor.

Device temperature control is required

Future Trends

5

5th Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

Objectives : Maintain constant device temperature Review of control method

Conventional Control

Control system to be realized and key points

Prober can actively control chuck temperature

Tester IF Board sends data from the device to Prober

Development items made possible to High Cooling Capacity & High Response Time

Let's discuss the details in the Key Data section

Key Data : Evaluation Fixture and Thermal Control Mode Evaluation Fixture Thermal Control Mode

4 modes are available

- HTF (Chuck Temp Feedback)
- DTF (Device Temp Feedback)
- PF (Power Following)
- GPIB Offset

5th Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

Key Data : Results in each control mode @85C

Successful device temperature control by DTF Mode / PF Mode

Key Data : Tj Simulation

Overall system for Heat Dissipation Simulation

Actual vs Simulation

Simulation result was quite much with actual data.

- Creating a device model

 \succ Identify the TJ change relative to test power input.

- Creating a chuck model
 - \succ Identify the chuck RTD change relative to heater input.

The Prober was developed on a model basis using a simulator

Conclusion

New Technology enables Device Temperature Control at Wafer Level, and in evaluations, Tj was maintained within ±3C at a power of 50W/cm2

The following changes were effective for high-heat generating devices

- Fast response time due to improved thermal capacity of chuck
- Unique thermal systems and controllers

New Technology enables True KGD verification testing in wafer test, contributing to the future evolution of Logic devices and chiplets

- Wide range of temperature
- Increased cooling capacity
- Further Improvement of Response Time

You may not copy or disclose to any third party without prior written consent with TEL.

Tokyo Electron

TEL and "TEL" are trademarks of Tokyo Electron Limited.

