

New Generation of Fine Pitch Kelvin Spring Probes

Bert Brost

Ming-Ting Wu PhD

MICROFABRICA

Hsinchu, Taiwan, October 26-28, 2022

- Introduction / Background
- Goals & Objectives
- Why Kelvin Measurement?
- Design Criteria for True Kelvin Spring Probes
- MEMS Fabrication of True Kelvin Spring Probes
- Design Results
- Summary

Introduction

- Wafer-Level-Chip-Scale-Package (WLCSP) is becoming packaging technology of choice across different applications
- Major trends in WLCSP
 - Increasing wafer size
 - Shrinking die size
 - Tighter pitches
 - Increasing I/O counts
- New generation of Kelvin contacting technology is required to support these immutable trends
 - Scales down to very fine pitches and ball sizes
 - Highly precise and reliable
 - Easier to use and maintain (crucial for high I/O count applications that are cost sensitive)

Yannou, J-M.: Market dynamics impact WLCSP adoption, 3D Packages, No. 22, Feb (2012)

WLCSP wafer

Goals & Objectives

• Goal:

- Advance True Kelvin Spring Probes for fine-pitch WLCSP
- Objectives
 - Enable True Kelvin measurement over full array at fine pitches
 - Enable capability to "mix and match" w standard spring probes for non-Kelvin test I/Os
 - Improve pointing accuracy for reliably hitting smaller targets
 - Make True Kelvin Spring Probes easier to use and maintain
 - Reduce the overall cost of Kelvin Test

Why Kelvin Measurement?

Overview:

- Test interconnect circuit
- Kelvin connection
- Evolution of resistance measurement
 - Traditional Two-Wire measurement
 - Four-Wire measurement through two standard spring probes
 - Four-Wire measurement through two True Kelvin Spring Probes

Test Interconnect Circuit

- A test interconnect circuit includes test interface board, test contact spring probes, Device-Under-Test (DUT)
- The resistance of the test interface board and the contact probes are added into the resistance measurement, causing significant error in measurement of DUT

Improved Measurement Accuracy

- Direct Measurement vs. Kelvin Measurement
- Direct Measurement (2-wire)
 - In the example, the measurement through one series circuit will measure the total resistance of 2.0 Ω which includes 1.0 Ω from the probes

Kelvin measurement (4-wire)

- The Kelvin connection separates the sensing circuit from forcing circuit to create a parallel connections, which measures the voltage with higher accuracy
- In the example, this measurement correctly determines the resistance of DUT as 1.0 Ω

DC Measurement Accuracy at the DUT

Direct Measurement (2-wire) Setup

Sensing Circuit Is Not a Big Deal

- The input impedance of the Multimeter is very high and negligible current flows into it
- Sensing circuit is parallel to forcing circuit
- Sense connections are very close to DUT

Traditional Two-Wire Interconnect

- Shown here is a basic block diagram of an Automatic Test Equipment (ATE) measurement circuit with some of the interconnects to the DUT
- The total resistance measured will include the resistance of the test interface board, test contact probes and DUT because there is only one series path for current to flow
- The resistance introduced from the test board and the probes become unacceptable for many applications where DUT resistances are very low

Four-Wire Measurement through Two Standard Spring Probes

- Four-wire connection at the contactor involves shorting the force and sense lines via the spring probes at the test interface board
 - This method is used when an accurate measurement is desired, but Kelvin contacting <u>at</u> the DUT is not feasible.
 - The voltage and resistances measured are across the combination of contact probes and DUT

Four-Wire Measurement through Two True Kelvin Spring Probes

 The True Kelvin Spring Probe consists of two isolated electrical paths in one probe, allowing accurate measurement right at the DUT

Design Criteria for True Kelvin Spring Probes

- True Kelvin spring probe should have force and sense paths integrated into a single probe
- Force and sense paths should be electrically isolated from one another
- Probe should have two tips one for force and one for sense
 - Each tip is allowed to move mechanically independent of other so they can conform to ball non-uniformities
- Tip dimensions and probe pointing accuracy should allow hitting small targets (ball diameters < 200 µm)
 Electrical and mechanical performance should meet application specs

MEMS Additive Manufacturing Overview

Sample devices

3rd Annual SWTest Asia | Taiwan, October 27-28, 2022

Mica-Freeform Video

13

Additive Manufacturing of Kelvin Probes

- Complex 3D structure and assembly can be additively fabricated
 - Enables fabrication of the full True Kelvin Spring Probe without the need of assembly
- Different metals, metal alloys, and dielectric material can be combined into micro-composite structures
 - Enables optimized electrical and mechanical characteristic for the True Kelvin spring probe
- High accuracy and high precision achieved using MEMS processes
 - Enables precise spring and tip geometry for advance pitch applications

Results

 True Kelvin Spring Probes designed and fabricated using MEMS additive manufacturing technology

Salient features:

- Designed for < 350 μm pitch
- Spacing between tips: 40 µm
- Force and sense paths verified to be electrically isolated
- Tips verified to move independently
- Demonstrated lifetime of probe > 1M cycles
- Designed to require only 1 hole per probe in the socket

Summary

- Kelvin measurement eliminates parasitic voltage drops which degrade the measurement accuracy when the user is seeking to calculate very low resistance values and obtain higher confidence in test data
- New Generation of Fine-Pitch True Kelvin Spring Probes provide a solution to meet the requirements advanced WLCSP applications
 - Leverages highly flexible additive manufacturing technology
 - Enables Kelvin testing at fine pitches & high I/O count
 - Promises high performance, reliability at lower overall cost

Thank You

Hsinchu, Taiwan, October 26-28, 2022