

TestGeni - An Intelligent Automation Tool for ATE Engineers

Nachiappan Vaishnavi Caliber Interconnects Pvt Ltd

Hsinchu, Taiwan, October 26-28, 2022

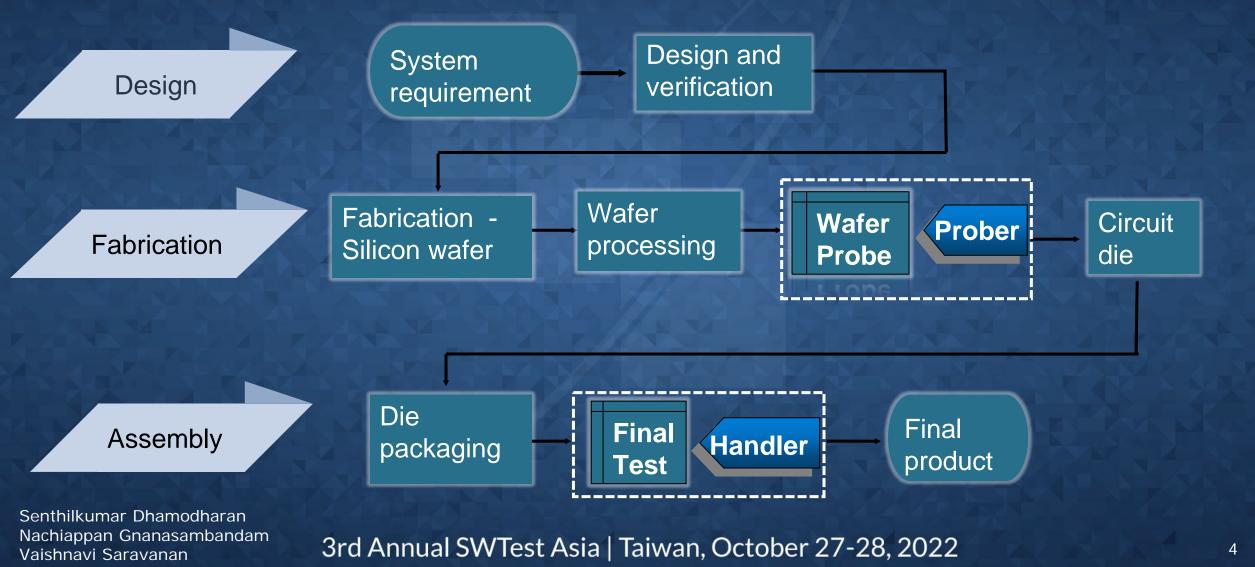
Table of Contents

01	INTRODUCTION
02	PROGRAM FLOW IN TESTING
03	WHY TESTGENI?
04	PROTOTYPE
05	GLIMPSE OF TESTGENI FEATURES
06	ON TARGET
07	CONCLUSION

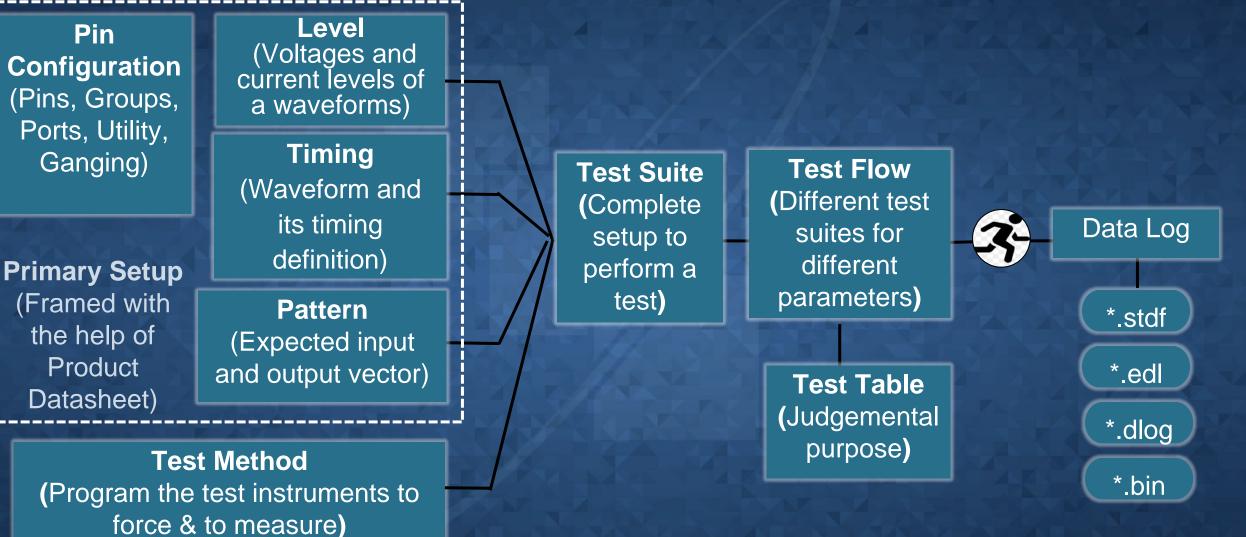
Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Introduction

Time is money in semiconductor industry


One of the biggest challenges of post silicon validation is time reduction in program development and testing

Automation: An intelligent solution reducing the manual efforts


Caliber intends to provide the best possible automation in test program generation even in the absence of tester tool

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Post silicon validation in IC manufacture cycle

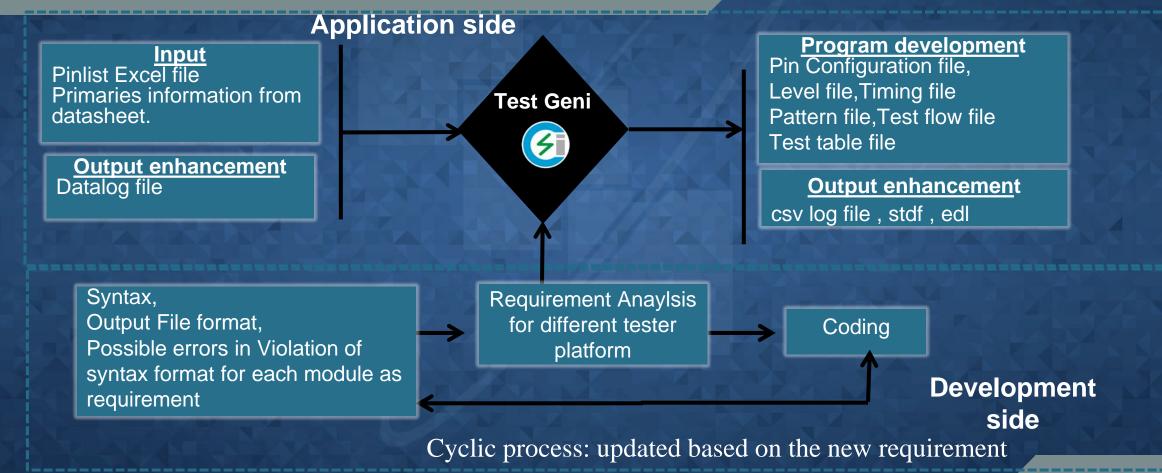
Basic program development flow

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Why TestGeni?

Quick generation of primary setup files

Huge vector generation, i.e., fault detecting algorithms for memory chip testing

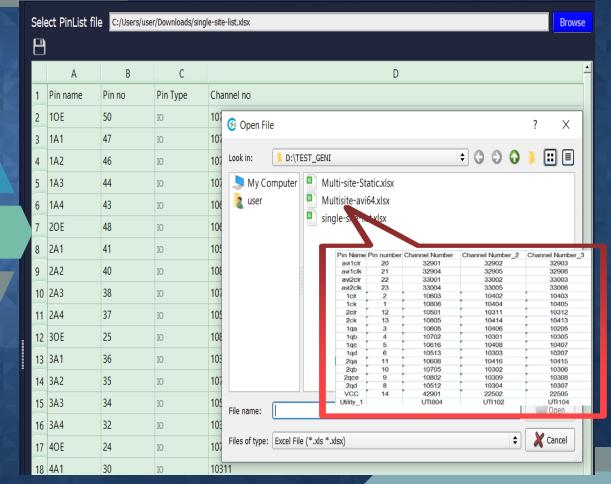

Legacy tester pattern conversion to desired tester platform conversion

Cross portability in production, characterization and debug test flow

Analysis of data log and generation of user defined(Textual & Visual) formats

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Prototype model of TestGeni


Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Automation: Primaries development

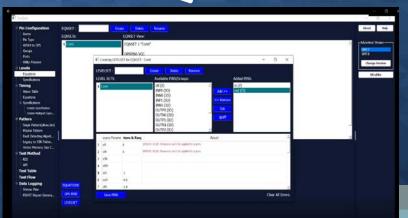
Converts excel file into a loadable pin config file supported by tester tool

Time reduction in feeding pins for primary setup file

Customizable with any kind of pin-info to tester compatible pin config

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Automation: Primaries development


User friendly GUI interface in generating primaries and avoids the manual syntax errors

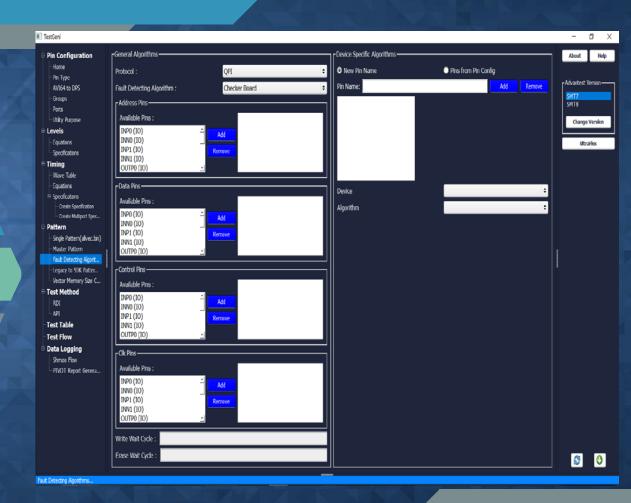
Reduces time in test program development

Supports multiple tester platform

VIL [V] VIH [V] VOL [V] VOH [V] IOL [MA] IOH [MA] DPSPINS VCC vout= VCC vout_frc_rng=7 iout_clamp_rng=500 ilimit=500 t_ms=4 offcurr=act #connect_state= UNGANG LEVELSET1 "LEVSET1_CONT" PINS cont_pins vil=VIL

vil=VIL vih=VIH vol=VOL voh=VOH vt=VT iol=IOL ioh=IOH

7 EOUNSET CONT DESSHOR


Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Oracle Vector generation

Easy generation of huge vectors with the help of algorithms.

Incorporation of protocol based predefined fault coverage algorithms.

Vector generation for NOR, NAND Flash memory device specific algorithms

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Expeditious pattern conversion

Legacy tester pattern to desired tester pattern conversion

Sample conversion from a legacy tester platform to V93000-SM7 patterns

Swift conversion in a single click

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Vector memory size calculator

Firmware commands are essential to find the size of vector memory.

TestGeni facilitates user friendly GUI interface with vector and configuration file

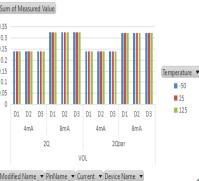
Selected pin, port, vector wise memory size calculation

Pin Configuration	Select PMF File : ishnavi/IP/LinkedIn_Co	ntent/Input/vectors/NANDFLASH_W25N01GV2	ZEIG_DUMMY.pmf Browse PMF File About	Help
- Home	Select CFG file : D:/vaishnavi/IP/LinkedI	n Content/Input/configuration/NANDFLASH W	25N01GVZEIG.cfg Browse CFG Fie	
- Pin Type - AVI64 to DPS	FILE NAMES :		CAdvantest Vers	sion —
- Groups			SMT7	
- Ports	1	2	- SMT8	
Utility Purpose		dIn_Content/Input/vectors/NAND_FULL/CONT	Change Ver	rsion
🖶 Levels	2 CONTI_FU D:/vaishnavi/IP/Linke	dIn_Content/Input/vectors/NAND_FULL/CONT	I/CONTI_FUNC_RECENT	
Equations	3 CONTI_FU D:/vaishnavi/IP/Linke	dIn_Content/Input/vectors/NAND_FULL/CONT	T/CONTI_FUNC_ZIGZAG_REC Ultrafle	ж.
Specifications	4 FUNC_BL D:/vaishnavi/IP/Linke	dIn_Content/Input/vectors/NAND_FULL/DC/F	UNC_BLOCK_ERASE_ML	
Timing	5 DC_STAN D:/vaishnavi/IP/Linke	dIn_Content/Input/vectors/NAND_FULL/DC/D	C_STANDBY_RECENT	
– Wave Table – Equations	PORT NAMES :	PIN NAMES :		
Specifications	SUPPLY_PIN	CS		
Create Specification	DIGITAL_PINS	DO		
Create Multiport Spec	CONTI	WP	1	
Pattern		DI		
-Single Pattern(alvec.bin)		HOLD		
-Master Pattern		VCC		
 Fault Detecting Algorit Legacy to 93K Patter 				
-Vector Memory Size C	Calculated PORT	memory Calculated Pl	N memory	
Test Method	PORT memory PORT's no	ot found PIN memory	PIN's not found	
- RDI	1 2	1 2	L VCC	
- API	1 SUPPLY_PIN 18960	1 DO 15432		
Test Table	2 CONTI 18960	2 CLK 10016		
-Test Flow				
🗄 Data Logging	3 DIGITAL 25392	3 DI 12336		
		4 WP 12768		
Shmoo Flow PIVOT Report Genera		5 CS 16520		

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Datalogging

Converting stdf file into an expansive csv file with easily accessible and organised parametrics

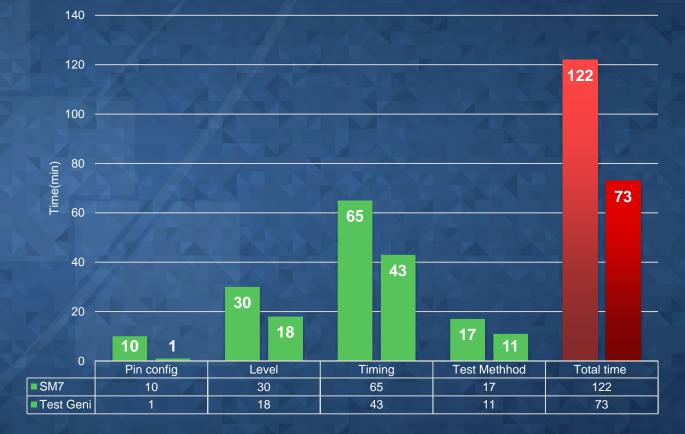

Data and test time crunching for quick reporting

Shmoo plot generation from datalog file

	115.8	3 - F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
	115.88	3 - F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
	115.96	5 - F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
	116.04	1 - F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
_	_ 116.12	2 - F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
1H ²	116.2	2 - F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
	116.28	3 - F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		_
i ti	5 116.36	5 <u>-</u> F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		F F
TIM 2 f@Dinital[MHz	116.44	_	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
5 f	116.52	_	Р	Р	Р	Р	F	F	F	F	F	F	F	F	F	F	F		
IN	116.6	_	Р	Р	Р	Р	Р	P	Р	Р	Р	Р	Р	Р	Ρ	Р	Р		
ľ	116.68	_	Р	F	Р	F	Р	Р	Р	Р	Р	Ρ	Р	Р	Р	Р	Р		
	116.76	_	F	F	F	F	Р	F	F	F	F	F	F	F	F	F	F		
	116.84		F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
	116.92	-	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
	117.0	D <u>F</u>	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
		0.0	0.4	0.8	1.2	1.6	2.0	- 2.4	5.2 8.2	3.2	9.0 N	4.0	4.4	4.8	5.2	5.6	6.0		
	A	В		С		D	E		F	G		н	1	J	K	L	М	N	0
1 Sum of Measured Value							Temperature 💌												
2	Modified Nar 🔻	PinName	▼ Curr	ent [Device 	Name 💌		-50	25		125								
-	VOL	2Q	4mA		D1				0.240723997			Sum of	Measured Va	alue					
4					D2				0.240437999			0.35							

 2
 Modified Name
 PinName
 Current
 Device Name
 -50
 25
 12

 3
 VOL
 2Q
 4mA
 D1
 0.240437999
 0.240439995
 0.240439995
 0.240439995
 0.240439995
 0.240439995
 0.240439995
 0.240324005
 0.35
 0.35
 0.35
 0.35
 0.35
 0.35
 0.35
 0.37
 0.240324005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005
 0.324503005


Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

On Target

Use case

- ✓ Real time product: Digital ASIC
- Tester platform: Advantest 93k
 Version : SM7
- Test program development is implemented in both tester tool and TestGeni.
- Approximately 41.6% of time is saved using TestGeni

Development Time

SM7 Test Geni

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Conclusion and future work

- TestGeni helps in possible automation needed for test program development and analyses the test data which reduces the man hours
- Incorporating new tester platforms for portability and other advanced features is in progress to reduce the development time further

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan

Senthilkumar Dhamodharan Nachiappan Gnanasambandam Vaishnavi Saravanan