

Probecard Challenges for Expanding Arrays to Test Fine Pad Pitch Devices Under Wide Temperature Range

Pouya Dastmalchi, Ph.D. Application Eng. Manager

Hsinchu, Taiwan, October 26-28, 2022

Motivation of Work

- Continued strong growth in the wire bond, automotive IC market
- Expanding challenges and trends for wire bond probing

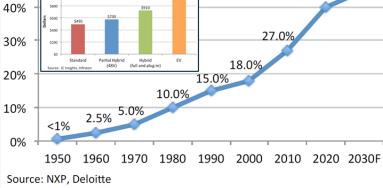
Development Strategy Overview

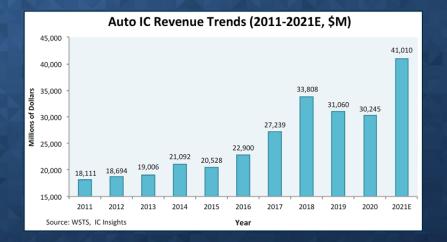
- Architectural Strategy
- Product Overview

Product Validation Results

- Internal Validation Results
- External Validation Data
- Summary and Acknowledgements

Automotive Semiconductor Market Overview

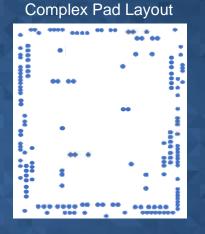

Automotive electronics is a fast-growing market


- Semiconductor-built electronics is expected to approach nearly half the cost of a new car early next decade.
- In 2021 Automotive IC Market size increased to
- Expanding at a CAGR of 6.2% from 2021 to 2028.

Requirements for automotive applications:

 "Unlike semiconductors intended for use in consumer electronics, automotive semiconductors must retain functionality in more extreme environments (colder and hotter temperatures) for longer periods of time", *The Automotive Semiconductor Market, USITC, May 2019*

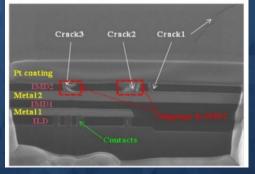
Electronic Systems as a Percent of New Car Cost



The Impact of Automotive Requirements for Semi Wafer Test

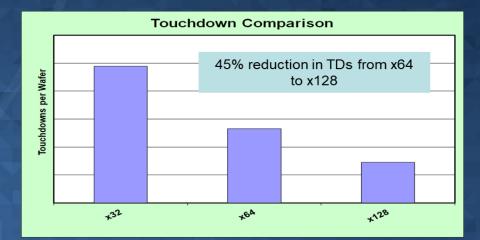
Critical requirements for automotive semiconductor test

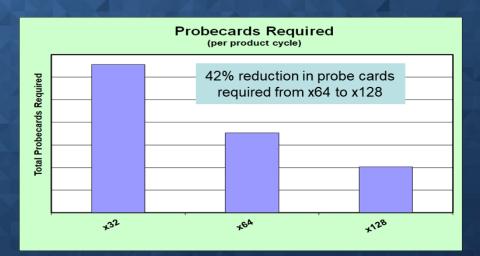
- Test temperature extremes continue to increase
- Increased complexity of peripheral pads layout
- Pad pitch continues to shrink
- Pad sizes are being reduced to support die size shrinks
- Dense device circuitry under the pads
- Devices can be sensitive to CRES and CRES variation
- IC suppliers driving reduced costs
 - Drives need for increased parallelism → LAA



Typical Wire Bond Device

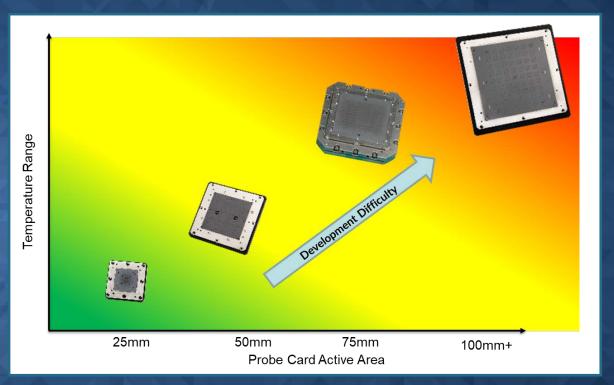
Increased Temp. extreme


Dense under pad circuitry

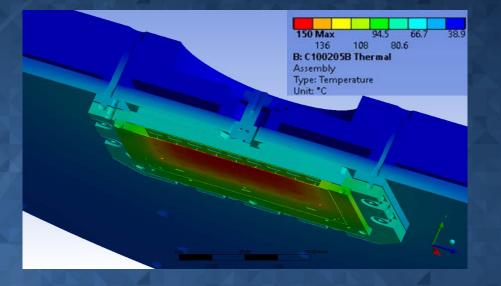


Meeting Cost of Test Reduction Challenges

- Reduce cost of test with increased parallelism
 - TCOO analysis
 - Key Assumptions:
 - 5.0mm x 5.0mm die size
 - 300mm wafer
 - 30 sec test time



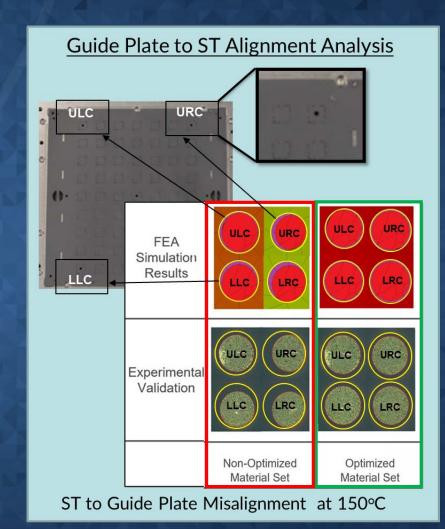
Increasing Probe Card Active Area


- Increasing parallelism requires increased probe head active area
- Presents significant development challenges to overcome to meet probing requirements
- Must consider critical requirements
 - Thermal effects
 - Device Layouts
 - Pad size/pitch
 - Electrical

As PH sizes and thermal requirements increase, CTE mis-match issues become significant challenge to overcome

Large Active Area Vertical PC Material Selection Strategy

- Three step process used to optimize the materials of various LAA probe card components:
 - 1. Prediction of thermal gradient on various components of the probe card by use of FEA simulation for the full temperature range
 - Chuck temperature of 150°C, 100°C temperature delta between the coldest and hottest components
 - 2. Optimal material selection:
 - Use thermal gradient derived from step one as input to thermal-mechanical model
 - Predict misalignment between various components and select best material combinations
 - **3.** Experimental validation of optimal material set for the full probe card build

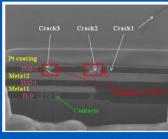


- Thermal model of a probe card with prober chuck temperature set at 150°C
- Model includes:
 - o Thermal conduction of all parts of the assembly
 - Contact conductance between the different horizontal members
 - o Radiation between the wafer and probe card
 - o Air conduction between the wafer and PCBA

Vertical PC Components Material Selection Challenges

Component	Consideration	Solution	
Guide Plates	CTE has direct impact on wafer bond pad size capability	Best match to customer wafer	
Space Transformer (ST)	ST to probe misalignment	Best match to guide plate	
Mounting Hardware	ST to probe misalignment	Best match to ST	

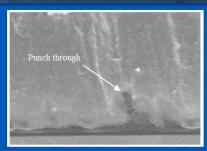
- Based on requirements of peripheral pad probing, FFI developed a solution based on a Multi-Layer Ceramic (MLC) ST
- Advantages include:
 - Low to moderate levels of CTE of the MLC → stable thermal-mechanical performance
 - 2. ST flatness \rightarrow good probe planarity
- Optimized material set -> stable thermal-mechanical performance



Bond Pad Integrity – Minimize Pad Damage

- "Reliability expectations for automotive devices are orders of magnitude higher than consumer devices"
- Bond pad damage must be held to a minimum both surface area and depth
 - Need clean area for bonding the device
 - Zero tolerance for ILD cracking for UPC damage

Low Force MEMS Springs		Medium/High Force Springs	
Spring Force	1.2 – 1.5 grams at production OT to support minimal pad damage	4 - 12 grams at production OT- High force can createexcessive pad damage	



0%

Automotive Non-Automotive

 $\uparrow \uparrow$

Increasing Yield Decreasing D0 -

Defect-limited yield requirements

for automotive devices

Current world

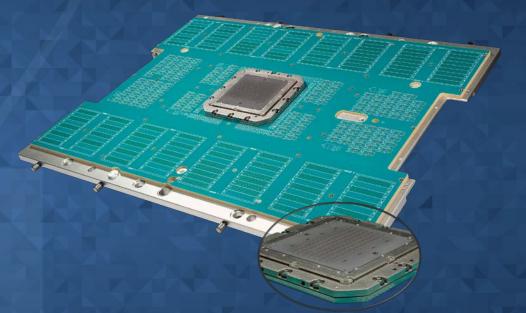
class yield and

defect density

Time

SEM images of pad damage issues causing device failures/issues

Automotive IC Industry Trends – Semiconductor Engineering – Jan. 2018


Meeting the Challenges of LAA Vertical Probing

• Requirements:

- Thermally stable vertical spring architecture to support wide temperature range of automotive test requirement
- Tight pad pitch, multiple pad rows, core pads
- Probe on small pads with minimal pad damage
- Stable electrical performance low, stable CRES
- Increase parallelism to reduce cost of test

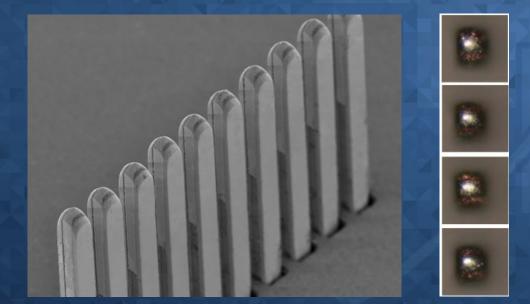
• Kepler[™] Vertical Probe Card Features:

- Utilizes Multi-Layer Ceramic (MLC) space transformer
- Proprietary fine pitch, low force vertical 2D MEMS springs
- Full planarity/tilt adjustment capability
- Flexible probe head configuration to support various device layouts, array sizes and pad pitch requirements
- Service friendly architecture field replaceable springs and components

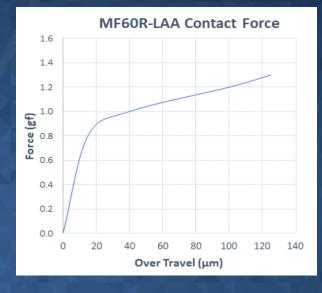
128 site, 60um Pitch, 10K Probes, V93K DD

Experimental and Qualification Results

• Low force spring performance

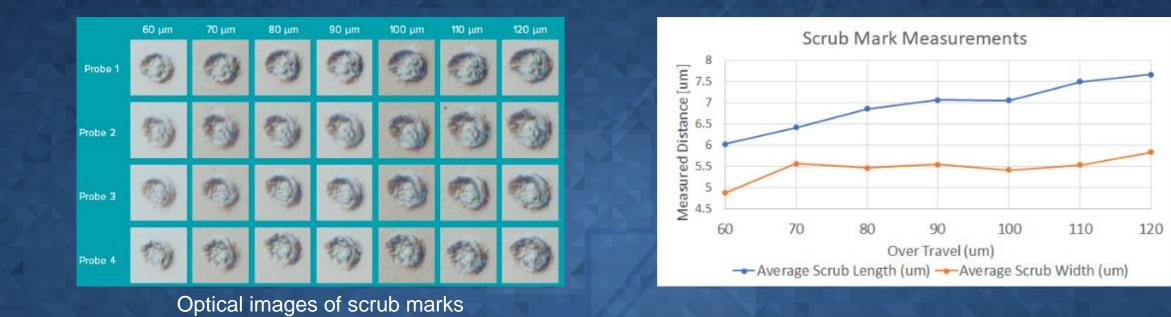

- ✓ 60um pad pitch capable
- Scrub mark results
 - Minimal pad damage and placement
- Thermal performance
 - Scrub mark position at temperature extremes

Planarity results


- ✓ Capability at 75mm active area
- CRES performance
 - ✓ Stability at temperature
- Lifetime study
 - ✓ Confirm low wear rate

FFI MF Family Low Force 2D MEMS Spring

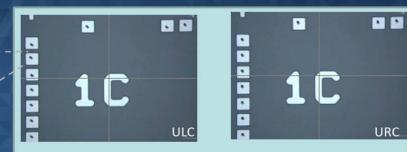
 Utilizing FFI low force 2D MEMS MF spring family, developed a solution for 60um pitch pads applications

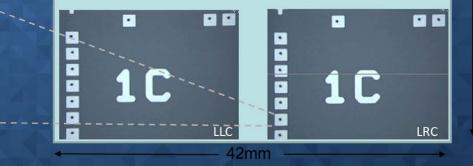

60um pitch SEM and Optical Images

60um pitch probe marks on 55x65um Al pads @ 125C (100um OT)

Scrub Mark Results

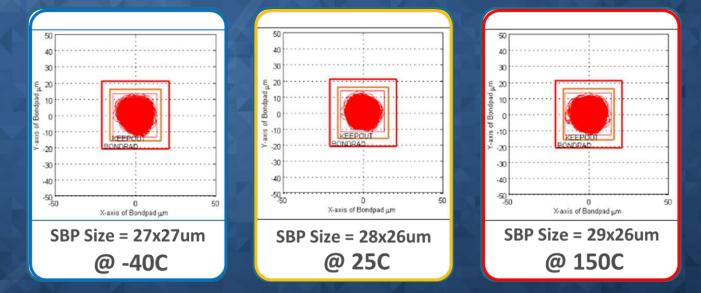
MF60R minimizes pad damage


- Small scrub mark from low force vertical spring minimizes pad damage area
- Very low risk of punch through due to small scrub mark with minimal lateral scrub


Kepler™ Thermal-Mechanical Performance

Experimental set-up:

- Parallelism: x128
- Array size: 42mm x 72mm
- Pad size: 55um x 55um
- TD data collected at -40°C, 25°C and 150°C
- Scrub mark images from upper right corner of die from four corners of the array

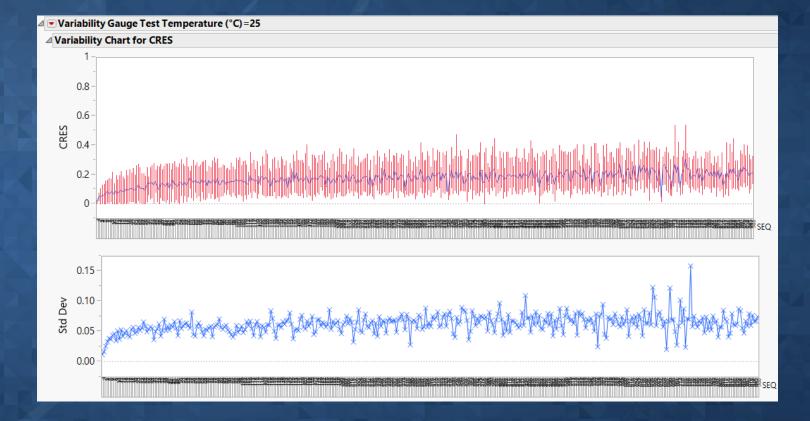


Scrub marks from temp range of 190°C landing in same pad area across the full PH array

Super Bond Pad Capability at Full Temp Range

Super Bond Pad (SBP):

- Consolidation of scrub marks superimposed on top of each other to establish a single virtual pad representing all scrub marks
- SBP calculation removes systematic errors not associated with the probe card capability
- Parallelism: x128
- Array size: 42mm x 72mm
- Pad size: 42um x 42um
- Keep out: 5um
- 100% of scrubs in pad area meeting the keep out spec



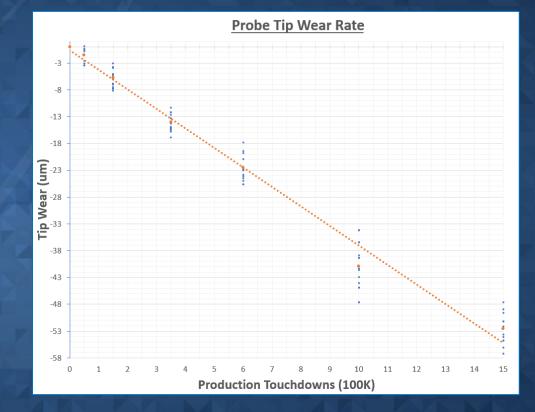
SBP performance < 30um per side through entire temperature range

CRES Performance at Room Temperature

• Test Conditions:

- Blank Al wafer
- Over Travel: 100um
- Number of TDs: 1000

Kepler[™] achieves low and stable CRes

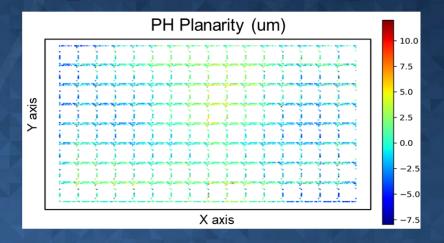

Wear Rate Study Results

• Objective:

 Establish probe tip wear rate during production use case

• Experiment:

- Accelerated study 100um OT on Al pads
- Tip length was measured at 50K, 150K, 350K, 600K, 1M, and 1.5M TDs
- Optimized cleaning recipe with WA6000-SWE

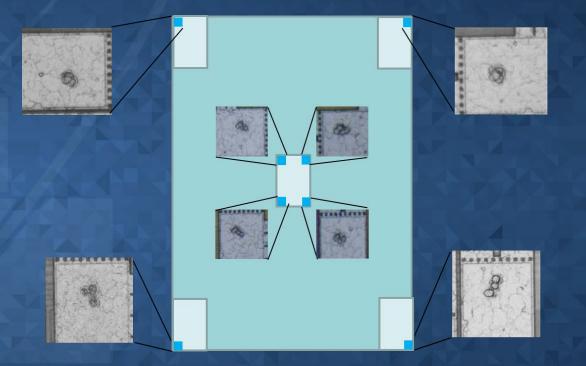

Data projects >1.5M Touch-Down lifetime

Large Active Area Planarity Performance

- Planarity measured on large active area array:
 - Array size: 42mm x 72mm
 - Parallelism: x128
- Measured outgoing planarity on PRVX showed
 <20um on entire array

Planarity	Min.	Max.	
19.9 um	-7.9 um	12.0 um	

 Incoming planarity collected with contact check for first to last electrical touch <u>confirmed ~25um</u> <u>planarity across full array</u>


Field Contact Check on Tester								
OD=0	OD=10	OD=20	OD=30	OD=40	OD=50			

Thermal-Mechanical Performance – Customer Validation

• Experimental set-up:

- Parallelism: x128
- Array size: 42mm x 72mm
- Pad size: 42um x 42um
- TD data collected at 150°C ,-40°C, 25°C and repeated at 150°C

 Scrub marks at all edges of the array landing in very small area – minimal pad impact

Architecture demonstrating very stable scrub mark placement from -40°C to 150°C

 Strong automotive IC market growth requiring large active area solutions for wire bond applications

FFI has developed a large active area vertical probe card solution

- Addressed challenges related to CTE mis-match to meet increasing test requirements
- Thermal-mechanical stability over wide temperature
- Tight pad pitch
- Small pad sizes
- Tight planarity and scrub mark position
- Stable and low CRES
- Long life-time
- Flexible low force vertical MEMS architecture to reduce cost of test with increasing multi-site capability

Acknowledgements

• Special thanks to:

- Mark Ojeda Infineon Technologies
- Cameron Harker FormFactor
- Yohannes Desta FormFactor
- John Muir FormFactor
- Doug Ondricek FormFactor